Skip to content

Commit

Permalink
Merge pull request #285 from ZJUEarthData/dev/Mengqi
Browse files Browse the repository at this point in the history
feat: add SGD classification algorithm.
  • Loading branch information
SanyHe authored Dec 12, 2023
2 parents 2d512b7 + 28b5a3a commit 5457e00
Show file tree
Hide file tree
Showing 4 changed files with 461 additions and 1 deletion.
1 change: 1 addition & 0 deletions geochemistrypi/data_mining/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@
"Multi-layer Perceptron",
"Gradient Boosting",
"K-Nearest Neighbors",
"Stochastic Gradient Descent",
]
CLUSTERING_MODELS = ["KMeans", "DBSCAN"]
DECOMPOSITION_MODELS = ["PCA", "T-SNE", "MDS"]
Expand Down
351 changes: 350 additions & 1 deletion geochemistrypi/data_mining/model/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from multipledispatch import dispatch
from rich import print
from sklearn.ensemble import ExtraTreesClassifier, GradientBoostingClassifier, RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.metrics import classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
Expand All @@ -31,6 +31,7 @@
from .func.algo_classification._logistic_regression import logistic_regression_manual_hyper_parameters, plot_logistic_importance
from .func.algo_classification._multi_layer_perceptron import multi_layer_perceptron_manual_hyper_parameters
from .func.algo_classification._rf import random_forest_manual_hyper_parameters
from .func.algo_classification._sgd_classification import sgd_classificaiton_manual_hyper_parameters
from .func.algo_classification._svc import svc_manual_hyper_parameters
from .func.algo_classification._xgboost import xgboost_manual_hyper_parameters

Expand Down Expand Up @@ -2988,3 +2989,351 @@ def special_components(self, **kwargs) -> None:
def special_components(self, is_automl: bool, **kwargs) -> None:
"""Invoke all special application functions for this algorithms by FLAML framework."""
pass


class SGDClassification(LinearWorkflowMixin, ClassificationWorkflowBase):
"""The automation workflow of using Stochastic Gradient Descent - SGD algorithm to make insightful products."""

name = "Stochastic Gradient Descent"
special_function = ["SGD Formula"]

def __init__(
self,
loss: str = "log_loss",
penalty: str = "l2",
alpha: float = 0.0001,
l1_ratio: float = 0.15,
fit_intercept: bool = True,
max_iter: int = 1000,
tol: Union[float, None] = 0.001,
shuffle: bool = True,
verbose: int = 0,
epsilon: float = 0.1,
n_jobs: int = None,
random_state: Optional[int] = None,
learning_rate: str = "optimal",
eta0: float = 0.0,
power_t: float = 0.5,
early_stopping: bool = False,
validation_fraction: float = 0.1,
n_iter_no_change: int = 5,
class_weight: Union[dict, str] = None,
warm_start: bool = False,
average: Union[bool, int] = False,
) -> None:
"""
Parameters
----------
loss : {'hinge', 'log_loss', 'modified_huber', 'squared_hinge',\
'perceptron', 'squared_error', 'huber', 'epsilon_insensitive',\
'squared_epsilon_insensitive'}, default='hinge'
The loss function to be used.
- 'hinge' gives a linear SVM.
- 'log_loss' gives logistic regression, a probabilistic classifier.
- 'modified_huber' is another smooth loss that brings tolerance to
outliers as well as probability estimates.
- 'squared_hinge' is like hinge but is quadratically penalized.
- 'perceptron' is the linear loss used by the perceptron algorithm.
- The other losses, 'squared_error', 'huber', 'epsilon_insensitive' and
'squared_epsilon_insensitive' are designed for regression but can be useful
in classification as well; see
:class:`~sklearn.linear_model.SGDRegressor` for a description.
More details about the losses formulas can be found in the
:ref:`User Guide <sgd_mathematical_formulation>`.
penalty : {'l2', 'l1', 'elasticnet', None}, default='l2'
The penalty (aka regularization term) to be used. Defaults to 'l2'
which is the standard regularizer for linear SVM models. 'l1' and
'elasticnet' might bring sparsity to the model (feature selection)
not achievable with 'l2'. No penalty is added when set to `None`.
alpha : float, default=0.0001
Constant that multiplies the regularization term. The higher the
value, the stronger the regularization. Also used to compute the
learning rate when `learning_rate` is set to 'optimal'.
Values must be in the range `[0.0, inf)`.
l1_ratio : float, default=0.15
The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1.
l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1.
Only used if `penalty` is 'elasticnet'.
Values must be in the range `[0.0, 1.0]`.
fit_intercept : bool, default=True
Whether the intercept should be estimated or not. If False, the
data is assumed to be already centered.
max_iter : int, default=1000
The maximum number of passes over the training data (aka epochs).
It only impacts the behavior in the ``fit`` method, and not the
:meth:`partial_fit` method.
Values must be in the range `[1, inf)`.
.. versionadded:: 0.19
tol : float or None, default=1e-3
The stopping criterion. If it is not None, training will stop
when (loss > best_loss - tol) for ``n_iter_no_change`` consecutive
epochs.
Convergence is checked against the training loss or the
validation loss depending on the `early_stopping` parameter.
Values must be in the range `[0.0, inf)`.
.. versionadded:: 0.19
shuffle : bool, default=True
Whether or not the training data should be shuffled after each epoch.
verbose : int, default=0
The verbosity level.
Values must be in the range `[0, inf)`.
epsilon : float, default=0.1
Epsilon in the epsilon-insensitive loss functions; only if `loss` is
'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'.
For 'huber', determines the threshold at which it becomes less
important to get the prediction exactly right.
For epsilon-insensitive, any differences between the current prediction
and the correct label are ignored if they are less than this threshold.
Values must be in the range `[0.0, inf)`.
n_jobs : int, default=None
The number of CPUs to use to do the OVA (One Versus All, for
multi-class problems) computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance, default=None
Used for shuffling the data, when ``shuffle`` is set to ``True``.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Integer values must be in the range `[0, 2**32 - 1]`.
learning_rate : str, default='optimal'
The learning rate schedule:
- 'constant': `eta = eta0`
- 'optimal': `eta = 1.0 / (alpha * (t + t0))`
where `t0` is chosen by a heuristic proposed by Leon Bottou.
- 'invscaling': `eta = eta0 / pow(t, power_t)`
- 'adaptive': `eta = eta0`, as long as the training keeps decreasing.
Each time n_iter_no_change consecutive epochs fail to decrease the
training loss by tol or fail to increase validation score by tol if
`early_stopping` is `True`, the current learning rate is divided by 5.
.. versionadded:: 0.20
Added 'adaptive' option
eta0 : float, default=0.0
The initial learning rate for the 'constant', 'invscaling' or
'adaptive' schedules. The default value is 0.0 as eta0 is not used by
the default schedule 'optimal'.
Values must be in the range `(0.0, inf)`.
power_t : float, default=0.5
The exponent for inverse scaling learning rate [default 0.5].
Values must be in the range `(-inf, inf)`.
early_stopping : bool, default=False
Whether to use early stopping to terminate training when validation
score is not improving. If set to `True`, it will automatically set aside
a stratified fraction of training data as validation and terminate
training when validation score returned by the `score` method is not
improving by at least tol for n_iter_no_change consecutive epochs.
.. versionadded:: 0.20
Added 'early_stopping' option
validation_fraction : float, default=0.1
The proportion of training data to set aside as validation set for
early stopping. Must be between 0 and 1.
Only used if `early_stopping` is True.
Values must be in the range `(0.0, 1.0)`.
.. versionadded:: 0.20
Added 'validation_fraction' option
n_iter_no_change : int, default=5
Number of iterations with no improvement to wait before stopping
fitting.
Convergence is checked against the training loss or the
validation loss depending on the `early_stopping` parameter.
Integer values must be in the range `[1, max_iter)`.
.. versionadded:: 0.20
Added 'n_iter_no_change' option
class_weight : dict, {class_label: weight} or "balanced", default=None
Preset for the class_weight fit parameter.
Weights associated with classes. If not given, all classes
are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``.
warm_start : bool, default=False
When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
See :term:`the Glossary <warm_start>`.
Repeatedly calling fit or partial_fit when warm_start is True can
result in a different solution than when calling fit a single time
because of the way the data is shuffled.
If a dynamic learning rate is used, the learning rate is adapted
depending on the number of samples already seen. Calling ``fit`` resets
this counter, while ``partial_fit`` will result in increasing the
existing counter.
average : bool or int, default=False
When set to `True`, computes the averaged SGD weights across all
updates and stores the result in the ``coef_`` attribute. If set to
an int greater than 1, averaging will begin once the total number of
samples seen reaches `average`. So ``average=10`` will begin
averaging after seeing 10 samples.
Integer values must be in the range `[1, n_samples]`.
References
----------
Scikit-learn API: sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
"""

super().__init__()
self.loss = loss
self.penalty = penalty
self.alpha = alpha
self.l1_ratio = l1_ratio
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.tol = tol
self.shuffle = shuffle
self.verbose = verbose
self.epsilon = epsilon
self.n_jobs = n_jobs
self.random_state = random_state
self.learning_rate = learning_rate
self.eta0 = eta0
self.power_t = power_t
self.early_stopping = early_stopping
self.validation_fraction = validation_fraction
self.n_iter_no_change = n_iter_no_change
self.class_weight = class_weight
self.warm_start = warm_start
self.average = average

self.model = SGDClassifier(
loss=self.loss,
penalty=self.penalty,
alpha=self.alpha,
l1_ratio=self.l1_ratio,
fit_intercept=self.fit_intercept,
max_iter=self.max_iter,
tol=self.tol,
shuffle=self.shuffle,
verbose=self.verbose,
epsilon=self.epsilon,
n_jobs=self.n_jobs,
random_state=self.random_state,
learning_rate=self.learning_rate,
eta0=self.eta0,
power_t=self.power_t,
early_stopping=self.early_stopping,
validation_fraction=self.validation_fraction,
n_iter_no_change=self.n_iter_no_change,
class_weight=self.class_weight,
warm_start=self.warm_start,
average=self.average,
)

self.naming = SGDClassification.name
self.customized = True
self.customized_name = "Stochastic Gradient Descent"

@property
def settings(self) -> Dict:
"""The configuration of SGD to implement AutoML by FLAML framework."""
configuration = {
"time_budget": 10, # total running time in seconds
"metric": "accuracy",
"estimator_list": [self.customized_name], # list of ML learners
"task": "classification", # task type
# "log_file_name": f'{self.naming} - automl.log', # flaml log file
# "log_training_metric": True, # whether to log training metric
}
return configuration

@property
def customization(self) -> object:
"""The customized SGD of FLAML framework."""
from flaml import tune
from flaml.data import CLASSIFICATION
from flaml.model import SKLearnEstimator
from sklearn.linear_model import SGDClassifier

class MySGDClassification(SKLearnEstimator):
def __init__(self, task="classification", n_jobs=None, **config):
super().__init__(task, **config)
if task in CLASSIFICATION:
self.estimator_class = SGDClassifier

@classmethod
def search_space(cls, data_size, task):
space = {
"loss": {"domain": tune.choice(["log_loss", "modified_huber"]), "init_value": "log_loss"},
"penalty": {"domain": tune.choice(["l2", "l1", "elasticnet", None]), "init_value": "l2"},
"alpha": {"domain": tune.loguniform(lower=0.0001, upper=1), "init_value": 0.0001},
"l1_ratio": {"domain": tune.uniform(lower=0, upper=1), "init_value": 0.15},
"fit_intercept": {"domain": tune.choice([True, False]), "init_value": True},
"max_iter": {"domain": tune.randint(lower=50, upper=1000), "init_value": 1000},
"tol": {"domain": tune.loguniform(lower=0.000001, upper=0.001), "init_value": 0.001},
"shuffle": {"domain": tune.choice([True, False]), "init_value": True},
"learning_rate": {"domain": tune.choice(["constant", "optimal", "invscaling", "adaptive"]), "init_value": "optimal"},
"eta0": {"domain": tune.loguniform(lower=0.000001, upper=0.1), "init_value": 0.000001},
"power_t": {"domain": tune.uniform(lower=0.1, upper=0.9), "init_value": 0.5},
"early_stopping": {"domain": tune.choice([True, False]), "init_value": False},
"validation_fraction": {"domain": tune.uniform(lower=0.000001, upper=1), "init_vlue": 0.1},
"warm_start": {"domain": tune.choice([True, False]), "init_value": False},
}
return space

return MySGDClassification

@classmethod
def manual_hyper_parameters(cls) -> Dict:
"""Manual hyper-parameters specification."""
print(f"-*-*- {cls.name} - Hyper-parameters Specification -*-*-")
hyper_parameters = sgd_classificaiton_manual_hyper_parameters()
clear_output()
return hyper_parameters

@dispatch()
def special_components(self, **kwargs) -> None:
"""Invoke all special application functions for this algorithms by Scikit-learn framework."""
GEOPI_OUTPUT_ARTIFACTS_PATH = os.getenv("GEOPI_OUTPUT_ARTIFACTS_PATH")
self._show_formula(
coef=[self.model.coef_],
intercept=self.model.intercept_,
features_name=SGDClassification.X_train.columns,
algorithm_name=self.naming,
local_path=GEOPI_OUTPUT_ARTIFACTS_PATH,
mlflow_path="root",
)

@dispatch(bool)
def special_components(self, is_automl: bool = False, **kwargs) -> None:
"""Invoke all special application functions for this algorithms by FLAML framework."""
GEOPI_OUTPUT_ARTIFACTS_PATH = os.getenv("GEOPI_OUTPUT_ARTIFACTS_PATH")
self._show_formula(
coef=self.auto_model.coef_,
intercept=self.auto_model.intercept_,
features_name=SGDClassification.X.columns,
algorithm_name=self.naming,
local_path=GEOPI_OUTPUT_ARTIFACTS_PATH,
mlflow_path="root",
)
Loading

0 comments on commit 5457e00

Please sign in to comment.