Skip to content

abbymark/image-classification-level1-02

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Level1 P-stage Image classification

💡 Team: boos2

Project Overview

  • Predict mask / gender / age
  • Input : 384 x 512 Image
  • Output : 0~17 classes
    • Mask : Wear, Incorrect, Not Wear
    • Gender : Male, Female
    • Age : <30, >=30 and <60, >=60

Archive contents

image-classification-level1-02/
├── input/
│   └── train/
|		├── images/
|		└── train.csv
│   └── eval/
|		├── images/
|		└── info.csv
├── Dataset.py
├── Model.py
├── Test.py
├── functions.py
└── main.py
  • input/data/train : train dataset images
  • input/data/test : used in evaluation
  • input/ : download from https://stages.ai/

Requirements

  • Ubuntu 18.04.5
  • Python 3.8.5
  • pytorch 1.7.1
  • torchvision 0.8.2

Install packages : pip install -r requirements.txt

Hardware

  • CPU: 8 x Intel(R) Xeon(R) Gold 5220 CPU
  • GPU: V100
  • RAM: 88GB

Train Model & Test & Save Result

sh run.sh

run.sh

python main.py \
--PATH '../input/data' \
--BATCH_SIZE 128 \
--SAVE true \
--SAVE_PATH 'saved/' \
--EPOCH 20
  • --PATH: train/, eval/ parent directory
  • --BATCH_SIZE: Batch size (default=128)
  • --SAVE: If want to save weights while training else remove this line
  • --SAVE_PATH: Saving weights directory
  • --EPOCH: Train epoch (default=20)

Trained Model

  • Pretrained ResNet18 model
  • No data augmentation
  • Hyperparameter
    • Learning rate : 1e-5
    • Optimizer : Adam
    • Batch size : 128

Contributors

Name @github Project link
안명철 @abbymark image classification
김민진 @kkmjkim image classification
박상현 @hyun06000 image classification
심세령 @seryoungshim17 image classification
이유진 @YoojLee image classification
정두해 @Doohae image classification
홍지연 @hongjourney image classification

About

image-classification-level1-02 created by GitHub Classroom

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.2%
  • Shell 0.8%