Pytorch implementation of GNN methods and models. Pytorch implementation of GNN.
THe intention of this repo is understand and integrate the methods then obtaining highger results.
List of data sets used, OGB (https://github.com/snap-stanford/ogb) data sets can be used if conditions permit :
Dataset | Nodes | Edges | Node Attr. | Classes | Train | Valid | Test |
---|---|---|---|---|---|---|---|
Cora | 2708 | 5429 | 1433 | 7 | 140 | 500 | 1000 |
Cora-Full | 2708 | 5429 | 1433 | 7 | 1208 | 500 | 1000 |
Citeseer | 3327 | 4732 | 3703 | 6 | 120 | 500 | 1000 |
Citeseer-Full | 3327 | 4732 | 3703 | 6 | 1827 | 500 | 1000 |
Pubmed | 19717 | 44338 | 500 | 3 | 60 | 500 | 1000 |
Pubmed-Full | 19717 | 44338 | 500 | 3 | 18217 | 500 | 1000 |
Status | Method | Paper | Cora | Citeseer | Pubmed |
---|---|---|---|---|---|
✔️ | GCN | Kipf and Welling, 2017 | 0.8220 | 0.6960 | 0.780 |
✔️ | GraphSAGE | Hamilton and Ying et al., 2017 | 0.850 | NA | 0.808 |
✔️ | GAT | Velickovic et al., 2018 | 0.7840 | 0.7060 | NA |
✔️ | SP_GAT | Yang Ye, Shihao Ji et al., 2021 | 0.8180 | 0.7070 | 0.7750 |
✔️ | FastGCN* | Chen and Ma et al., 2018 | 0.8240 | 0.7710 | 0.8780 |
✔️ | GRAND | Feng and Zhang et al., 2020 | 0.839 | 0.726 | 0.797 |
✔️ | GWNN | Bingbing Xu, Huawei Shen, Qi Cao et al., 2019 | 0.7990 | 0.7710 | NA |
* NA is because was not able to run in my system
Package | Version | Installation |
---|---|---|
python | 3.8.6 | conda create --name gnn python=3.8.6 |
numpy | 1.20.0 | pip install numpy==1.20.0 |
scipy | 1.6.0 | pip install scipy==1.6.0 |
pyyaml | 5.4.1 | pip install pyyaml==5.4.1 |
scikit-learn | 0.24.1 | pip install scikit-learn==0.24.1 |
pytorch | 1.7.1 | conda install pytorch==1.7.1 cudatoolkit=11.0 -c pytorch |
torch-geometric | 1.6.3 | Installation |
GCN : https://github.com/tkipf/pygcn
GAT : https://github.com/Diego999/pyGAT
SP_GAT : https://github.com/Diego999/pyGAT
GraphSage : https://github.com/dsgiitr/graph_nets
GWNN : https://github.com/Yanqi-Chen/GWNN
FastGCN : https://github.com/Gkunnan97/FastGCN_pytorch
GRAND : https://github.com/THUDM/GRAND
GraphLime: https://github.com/WilliamCCHuang/GraphLIME.git
This is open source project collected from other open sources , feel free to give feedback and raise comments