Skip to content

acopar/orange3

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Orange

Join the chat at https://gitter.im/biolab/orange3 build: passing codecov

Orange is a component-based data mining software. It includes a range of data visualization, exploration, preprocessing and modeling techniques. It can be used through a nice and intuitive user interface or, for more advanced users, as a module for the Python programming language.

This is the latest version of Orange (for Python 3). The deprecated version of Orange 2.7 (for Python 2.7) is still available (binaries and sources).

Installing with Miniconda / Anaconda

Orange requires Python 3.6 or newer.

First, install Miniconda for your OS. Create virtual environment for Orange:

conda create python=3 --name orange3

In your Anaconda Prompt add conda-forge to your channels:

conda config --add channels conda-forge

This will enable access to the latest Orange release. Then install Orange3:

conda install orange3

To install the add-ons, follow a similar recipe:

conda install orange3-<addon name>

See specific add-on repositories for details.

Installing with pip

To install Orange with pip, run the following.

# Install some build requirements via your system's package manager
sudo apt install virtualenv build-essential python3-dev

# Create a separate Python environment for Orange and its dependencies ...
virtualenv --python=python3 --system-site-packages orange3venv
# ... and make it the active one
source orange3venv/bin/activate

# Install Qt dependencies for the GUI
pip install PyQt5 PyQtWebEngine

# Install Orange
pip install orange3

Starting Orange GUI

To start Orange GUI from the command line, run:

orange-canvas
# or
python3 -m Orange.canvas

Append --help for a list of program options.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.1%
  • NSIS 1.3%
  • Shell 1.1%
  • C 0.4%
  • Jupyter Notebook 0.1%
  • C++ 0.0%