Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sync with upstream changes #146

Draft
wants to merge 977 commits into
base: dev
Choose a base branch
from
Draft

Sync with upstream changes #146

wants to merge 977 commits into from

Conversation

pavelkashkarov
Copy link
Collaborator

Automatically syncing fork repository with upstream changes

@pavelkashkarov pavelkashkarov force-pushed the auto-pr-branch branch 16 times, most recently from 915d8d6 to 0b21f49 Compare May 30, 2024 10:09
giacbrd and others added 14 commits June 13, 2024 19:39
…ist (langchain-ai#22817)

Some minor fixes in the documentation:
 - ElasticsearchCache initilization is now correct
 - List of integrations for ES updated
The `ReAct` is used all across LangChain but it is not referenced
properly.
Added references to the original paper.
…#22821)

- **Description:** Implement ZhipuAIEmbeddings interface, include:
     - The `embed_query` method
     - The `embed_documents` method

refer to [ZhipuAI
Embedding-2](https://open.bigmodel.cn/dev/api#text_embedding)

---------

Co-authored-by: Eugene Yurtsev <[email protected]>
…mple (langchain-ai#22833)

Description: Adjusting the syntax for creating the vectorstore
collection (in the case of automatic embedding computation) for the most
idiomatic way to submit the stored secret name.

Co-authored-by: Bagatur <[email protected]>
This PR adds the feature add Prem Template feature in ChatPremAI.
Additionally it fixes a minor bug for API auth error when API passed
through arguments.
…hain-ai#22764)

## Description

Currently, the Qdrant integration relies on exceptions raised by
[`get_collection`
](https://qdrant.tech/documentation/concepts/collections/#collection-info)
to check if a collection exists.

Using
[`collection_exists`](https://qdrant.tech/documentation/concepts/collections/#check-collection-existence)
is recommended to avoid missing any unhandled exceptions. This PR
addresses this.

## Testing
All integration and unit tests pass. No user-facing changes.
Updated ChatGroq doc string as per issue
https://github.com/langchain-ai/langchain/issues/22296:"langchain_groq:
updated docstring for ChatGroq in langchain_groq to match that of the
description (in the appendix) provided in issue
langchain-ai#22296. "

Issue: This PR is in response to issue
langchain-ai#22296, and more
specifically the ChatGroq model. In particular, this PR updates the
docstring for langchain/libs/partners/groq/langchain_groq/chat_model.py
by adding the following sections: Instantiate, Invoke, Stream, Async,
Tool calling, Structured Output, and Response metadata. I used the
template from the Anthropic implementation and referenced the Appendix
of the original issue post. I also noted that: `usage_metadata `returns
none for all ChatGroq models I tested; there is no mention of image
input in the ChatGroq documentation; unlike that of ChatHuggingFace,
`.stream(messages)` for ChatGroq returned blocks of output.

---------

Co-authored-by: lucast2021 <[email protected]>
Co-authored-by: Bagatur <[email protected]>
…angchain-ai#22721)

Anthropic tool results can contain image data, which are typically
represented with content blocks having `"type": "image"`. Currently,
these content blocks are passed as-is as human/user messages to
Anthropic, which raises BadRequestError as it expects a tool_result
block to follow a tool_use.

Here we update ChatAnthropic to nest the content blocks inside a
tool_result content block.

Example:
```python
import base64

import httpx
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field


# Fetch image
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")


class FetchImage(BaseModel):
    should_fetch: bool = Field(..., description="Whether an image is requested.")


llm = ChatAnthropic(model="claude-3-sonnet-20240229").bind_tools([FetchImage])

messages = [
    HumanMessage(content="Could you summon a beautiful image please?"),
    AIMessage(
        content=[
            {
                "type": "tool_use",
                "id": "toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
                "name": "FetchImage",
                "input": {"should_fetch": True},
            },
        ],
        tool_calls=[
            {
                "name": "FetchImage",
                "args": {"should_fetch": True},
                "id": "toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
            },
        ],
    ),
    ToolMessage(
        name="FetchImage",
        content=[
            {
                "type": "image",
                "source": {
                    "type": "base64",
                    "media_type": "image/jpeg",
                    "data": image_data,
                },
            },
        ],
        tool_call_id="toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
    ),
]

llm.invoke(messages)
```

Trace:
https://smith.langchain.com/public/d27e4fc1-a96d-41e1-9f52-54f5004122db/r
- **PR title**: [community] add chat model llamacpp


- **PR message**:
- **Description:** This PR introduces a new chat model integration with
llamacpp_python, designed to work similarly to the existing ChatOpenAI
model.
      + Work well with instructed chat, chain and function/tool calling.
+ Work with LangGraph (persistent memory, tool calling), will update
soon

- **Dependencies:** This change requires the llamacpp_python library to
be installed.
    
@baskaryan

---------

Co-authored-by: Bagatur <[email protected]>
Co-authored-by: Bagatur <[email protected]>
…n-ai#22888)

[Fixed typo](docs: Fix typo in tutorial about structured data
extraction)
…vant score,relevant score> pairs. (langchain-ai#22578)

- **Description:** Some of the Cross-Encoder models provide scores in
pairs, i.e., <not-relevant score (higher means the document is less
relevant to the query), relevant score (higher means the document is
more relevant to the query)>. However, the `HuggingFaceCrossEncoder`
`score` method does not currently take into account the pair situation.
This PR addresses this issue by modifying the method to consider only
the relevant score if score is being provided in pair. The reason for
focusing on the relevant score is that the compressors select the top-n
documents based on relevance.
    - **Issue:** langchain-ai#22556 
- Please also refer to this
[comment](UKPLab/sentence-transformers#568 (comment))
ccurme and others added 29 commits June 25, 2024 19:50
- rerun to remove warnings following
langchain-ai#23363
- `raise` -> `return`
…torstore history with a token buffer (langchain-ai#22155)

**langchain: ConversationVectorStoreTokenBufferMemory**

-**Description:** This PR adds ConversationVectorStoreTokenBufferMemory.
It is similar in concept to ConversationSummaryBufferMemory. It
maintains an in-memory buffer of messages up to a preset token limit.
After the limit is hit timestamped messages are written into a
vectorstore retriever rather than into a summary. The user's prompt is
then used to retrieve relevant fragments of the previous conversation.
By persisting the vectorstore, one can maintain memory from session to
session.
-**Issue:** n/a
-**Dependencies:** none
-**Twitter handle:** Please no!!!
- [X] **Add tests and docs**: I looked to see how the unit tests were
written for the other ConversationMemory modules, but couldn't find
anything other than a test for successful import. I need to know whether
you are using pytest.mock or another fixture to simulate the LLM and
vectorstore. In addition, I would like guidance on where to place the
documentation. Should it be a notebook file in docs/docs?

- [X] **Lint and test**: I am seeing some linting errors from a couple
of modules unrelated to this PR.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Lincoln Stein <[email protected]>
Co-authored-by: isaac hershenson <[email protected]>
fixed potential `IndexError: list index out of range` in case there is
no title

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:** Add support passing extra_body parameter

Some OpenAI compatible API's have additional parameters (for example
[vLLM](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#extra-parameters))
that can be passed thought `extra_body`. Same question in
openai/openai-python#767

<!--
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
-->
…ain-ai#23516)

- **Description:** This PR fixes an issue with SAP HANA Cloud QRC03
version. In that version the number to indicate no length being set for
a vector column changed from -1 to 0. The change in this PR support both
behaviours (old/new).
- **Dependencies:** No dependencies have been introduced.

- **Tests**:  The change is covered by previous unit tests.
Thank you for contributing to LangChain!

- [X] **PR title**: "community: fix code example in ZenGuard docs"


- [X] **PR message**: 
- **Description:** corrected the docs by indicating in the code example
that the tool accepts a list of prompts instead of just one


- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Thank you for review

---------

Co-authored-by: Baur <[email protected]>
- **Description:** Update Tongyi ChatModel rich docstring
- **Issue:** the issue langchain-ai#22296
…angchain-ai#19359)

## Description
Created a helper method to make vector search indexes via client-side
pymongo.

**Recent Update** -- Removed error suppressing/overwriting layer in
favor of letting the original exception provide information.

## ToDo's
- [x] Make _wait_untils for integration test delete index
functionalities.
- [x] Add documentation for its use. Highlight it's experimental
- [x] Post Integration Test Results in a screenshot
- [x] Get review from MongoDB internal team (@ShaneHarvey, @blink1073 ,
@NoahStapp , @caseyclements)



- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Added new integration tests. Not eligible for unit testing since the
operation is Atlas Cloud specific.
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

![image](https://github.com/langchain-ai/langchain/assets/2887713/a3fc8ee1-e04c-4976-accc-fea0eeae028a)


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
…ngchain-ai#23256)

Description: update agent and chains modules Pydantic root_validators.
Issue: the issue langchain-ai#22819

---------

Co-authored-by: gongwn1 <[email protected]>
Co-authored-by: Eugene Yurtsev <[email protected]>
Co-authored-by: Eugene Yurtsev <[email protected]>
Added missed docstrings. Formatted docstrings to the consistent form.
Added missed docstrings. Formatted docstrings to the consistent form.
- Updates chat few shot prompt tutorial to show off a more cohesive
example
- Fix async Chromium loader guide
- Fix Excel loader install instructions
- Reformat Html2Text page
- Add install instructions to Azure OpenAI embeddings page
- Add missing dep install to SQL QA tutorial

@baskaryan
Added missed docstrings. Formatted docstrings to the consistent form.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.