PETA: Evaluating the Impact of Protein Transfer Learning with Sub-word Tokenization on Downstream Applications
Updated on 2023.10.30
See in https://pytorch.org/. (Our version is Pytorch 2.1.0 & CUDA 11.8)
pip install transformers==4.34.1
pip install datasets==2.14.6
pip install lightning==2.1.0
pip install wandb
We release all models and tokenizers through the HuggingFace transformers library. You can use them directly with the library or download them from the model hub.
For example
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("AI4Protein/deep_base")
model = AutoModelForMaskedLM.from_pretrained("AI4Protein/deep_base")
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("AI4Protein/deep_bpe_3200")
sequence = "MSLGAKPFGEKKFIEIKGRRM"
tokens = tokenizer.tokenize(sequence)
one_hot_encoding = tokenizer.encode(sequence)
print(tokens)
# ['M', 'SLG', 'AK', 'PF', 'GE', 'KK', 'FI', 'EI', 'KG', 'RR', 'M']
print(one_hot_encoding)
# [1, 16, 331, 95, 197, 107, 56, 109, 180, 124, 48, 16, 2] (1 is the start token, 2 is the end token)
Generating hidden states for proteins
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("AI4Protein/deep_base")
model = AutoModel.from_pretrained("AI4Protein/deep_base")
sequences = [
"MSLGAKPFGEKKFIEIKGRRM",
"MKFLQVLPAL",
"MKLLVVLSLVAVACNAS",
"MKIAGID",
]
tensors = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt", max_length=1024)
input_ids = tensors["input_ids"]
attention_mask = tensors["attention_mask"]
outputs = model(input_ids, attention_mask=attention_mask)
hidden_state = outputs.last_hidden_state
print(hidden_state.shape)
# torch.Size([4, 23, 768])
model_path | tokenization type | vocab_size |
---|---|---|
AI4Protein/deep_base | per-AA | 33 |
AI4Protein/deep_bpe_50 | BPE | 50 |
AI4Protein/deep_bpe_100 | BPE | 100 |
AI4Protein/deep_bpe_200 | BPE | 200 |
AI4Protein/deep_bpe_400 | BPE | 400 |
AI4Protein/deep_bpe_800 | BPE | 800 |
AI4Protein/deep_bpe_1600 | BPE | 1600 |
AI4Protein/deep_bpe_3200 | BPE | 3200 |
AI4Protein/deep_unigram_50 | Unigram | 50 |
AI4Protein/deep_unigram_100 | Unigram | 100 |
AI4Protein/deep_unigram_200 | Unigram | 200 |
AI4Protein/deep_unigram_400 | Unigram | 400 |
AI4Protein/deep_unigram_800 | Unigram | 800 |
AI4Protein/deep_unigram_1600 | Unigram | 1600 |
AI4Protein/deep_unigram_3200 | Unigram | 3200 |
Download dataset
wget https://lianglab.sjtu.edu.cn/files/ESWA-2023/benchmark_datasets.zip
unzip benchmark_datasets.zip
ls ft_datasets
Evaluate command
Note: PRECISION='bf16' is only available on the Ampere architecture GPUS (RTX 3090, Telsa A100, etc.). If your GPU is not Ampere architecture, please use PRECISION='fp16' or 'bf16-true' instead.
export PYTHONPATH="$PYTHONPATH:./"
DATASET="gb1"
SPLIT_METHOD="one_vs_rest"
BATCH_SIZE=128
MODEL="AI4Protein/deep_base"
POOLING_HEAD="attention1d"
DEVICES=1
NUM_NODES=1
SEED=3407
PRECISION='bf16'
MAX_EPOCHS=100
ACC_BATCH=1
LR=1e-3
PATIENCE=20
STRATEGY="auto"
FINETUNE="head"
python peta/train.py \
--dataset $DATASET \
--split_method $SPLIT_METHOD \
--batch_size $BATCH_SIZE \
--model $MODEL \
--pooling_head $POOLING_HEAD \
--devices $DEVICES \
--strategy $STRATEGY \
--num_nodes $NUM_NODES \
--seed $SEED \
--precision $PRECISION \
--max_epochs $MAX_EPOCHS \
--accumulate_grad_batches $ACC_BATCH \
--lr $LR \
--patience $PATIENCE \
--finetune $FINETUNE \
--wandb_project ft-$DATASET \
--wandb
export PYTHONPATH="$PYTHONPATH:./"
DATASET="gb1"
SPLIT_METHOD="one_vs_rest"
BATCH_SIZE=128
MODEL="AI4Protein/deep_base"
POOLING_HEAD="attention1d"
DEVICES=1
NUM_NODES=1
SEED=3407
PRECISION='bf16'
MAX_EPOCHS=100
ACC_BATCH=1
LR=1e-3
PATIENCE=20
STRATEGY="auto"
FINETUNE="head"
python peta/train.py \
--dataset $DATASET \
--split_method $SPLIT_METHOD \
--batch_size $BATCH_SIZE \
--model $MODEL \
--pooling_head $POOLING_HEAD \
--devices $DEVICES \
--strategy $STRATEGY \
--num_nodes $NUM_NODES \
--seed $SEED \
--precision $PRECISION \
--max_epochs $MAX_EPOCHS \
--accumulate_grad_batches $ACC_BATCH \
--lr $LR \
--patience $PATIENCE \
--finetune $FINETUNE
You can find all available datasets and splits in peta/dataset.py.
If you want to use your own dataset, you can refer to peta/dataset.py and peta/train.py to write your own dataset class. Welcome to propose a pull request to upload your own dataset.
This project is under the MIT license. See LICENSE for details.
A lot of code is modified from 🤗 transformers and Lightning-AI.
If you find this repository useful, please consider citing this paper:
@misc{tan2023peta,
title={PETA: Evaluating the Impact of Protein Transfer Learning with Sub-word Tokenization on Downstream Applications},
author={Yang Tan and Mingchen Li and Pan Tan and Ziyi Zhou and Huiqun Yu and Guisheng Fan and Liang Hong},
year={2023},
eprint={2310.17415},
archivePrefix={arXiv},
primaryClass={cs.CL}
}