-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 3dec464
Showing
25 changed files
with
2,414 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
led / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
# data | ||
data.cifar10/ | ||
data.cifar100/ | ||
*.gz | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
checkpoint/ | ||
env/ | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
.hypothesis/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
#*.log | ||
local_settings.py | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# celery beat schedule file | ||
celerybeat-schedule | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# dotenv | ||
.env | ||
*.tar | ||
|
||
# virtualenv | ||
.venv | ||
venv/ | ||
ENV/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
|
||
tmp | ||
runs | ||
run | ||
|
||
# PyCharm | ||
.idea/ | ||
|
||
# macOS metadata | ||
.DS_Store | ||
._.DS_Store | ||
._* | ||
|
||
# | ||
data/ | ||
log/ | ||
summary/ | ||
data/kernel_toy/*.pth | ||
data/AS/gp-structure-search | ||
#*.data | ||
data/mnist_data | ||
*.npz | ||
*.txt | ||
#*.png | ||
*.jpeg | ||
*.jpg | ||
#results/ | ||
*.pyc | ||
*__pycache__ | ||
|
||
checkpoint/ | ||
runs/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# K-FAC_pytorch |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
'''Train CIFAR10/CIFAR100 with PyTorch.''' | ||
import argparse | ||
import os | ||
from optimizers import (KFACOptimizer, EKFACOptimizer) | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch.optim.lr_scheduler import MultiStepLR | ||
|
||
from tqdm import tqdm | ||
from tensorboardX import SummaryWriter | ||
from utils.network_utils import get_network | ||
from utils.data_utils import get_dataloader | ||
|
||
|
||
# fetch args | ||
parser = argparse.ArgumentParser() | ||
|
||
|
||
parser.add_argument('--network', default='vgg16_bn', type=str) | ||
parser.add_argument('--depth', default=19, type=int) | ||
parser.add_argument('--dataset', default='cifar10', type=str) | ||
|
||
# densenet | ||
parser.add_argument('--growthRate', default=12, type=int) | ||
parser.add_argument('--compressionRate', default=2, type=int) | ||
|
||
# wrn, densenet | ||
parser.add_argument('--widen_factor', default=1, type=int) | ||
parser.add_argument('--dropRate', default=0.0, type=float) | ||
|
||
|
||
parser.add_argument('--device', default='cuda', type=str) | ||
parser.add_argument('--resume', '-r', action='store_true') | ||
parser.add_argument('--load_path', default='', type=str) | ||
parser.add_argument('--log_dir', default='runs/pretrain', type=str) | ||
|
||
|
||
parser.add_argument('--optimizer', default='kfac', type=str) | ||
parser.add_argument('--batch_size', default=128, type=float) | ||
parser.add_argument('--epoch', default=100, type=int) | ||
parser.add_argument('--milestone', default=None, type=str) | ||
parser.add_argument('--learning_rate', default=0.01, type=float) | ||
parser.add_argument('--momentum', default=0.9, type=float) | ||
parser.add_argument('--stat_decay', default=0.95, type=float) | ||
parser.add_argument('--damping', default=1e-3, type=float) | ||
parser.add_argument('--kl_clip', default=1e-2, type=float) | ||
parser.add_argument('--weight_decay', default=3e-3, type=float) | ||
parser.add_argument('--TCov', default=10, type=int) | ||
parser.add_argument('--TScal', default=10, type=int) | ||
parser.add_argument('--TInv', default=100, type=int) | ||
|
||
|
||
parser.add_argument('--prefix', default=None, type=str) | ||
args = parser.parse_args() | ||
|
||
# init model | ||
nc = { | ||
'cifar10': 10, | ||
'cifar100': 100 | ||
} | ||
num_classes = nc[args.dataset] | ||
net = get_network(args.network, | ||
depth=args.depth, | ||
num_classes=num_classes, | ||
growthRate=args.growthRate, | ||
compressionRate=args.compressionRate, | ||
widen_factor=args.widen_factor, | ||
dropRate=args.dropRate) | ||
net = net.to(args.device) | ||
|
||
# init dataloader | ||
trainloader, testloader = get_dataloader(dataset=args.dataset, | ||
train_batch_size=args.batch_size, | ||
test_batch_size=256) | ||
|
||
# init optimizer and lr scheduler | ||
optim_name = args.optimizer.lower() | ||
tag = optim_name | ||
if optim_name == 'sgd': | ||
optimizer = optim.SGD(net.parameters(), | ||
lr=args.learning_rate, | ||
momentum=args.momentum, | ||
weight_decay=args.weight_decay) | ||
elif optim_name == 'kfac': | ||
optimizer = KFACOptimizer(net, | ||
lr=args.learning_rate, | ||
momentum=args.momentum, | ||
stat_decay=args.stat_decay, | ||
damping=args.damping, | ||
kl_clip=args.kl_clip, | ||
weight_decay=args.weight_decay, | ||
TCov=args.TCov, | ||
TInv=args.TInv) | ||
elif optim_name == 'ekfac': | ||
optimizer = EKFACOptimizer(net, | ||
lr=args.learning_rate, | ||
momentum=args.momentum, | ||
stat_decay=args.stat_decay, | ||
damping=args.damping, | ||
kl_clip=args.kl_clip, | ||
weight_decay=args.weight_decay, | ||
TCov=args.TCov, | ||
TScal=args.TScal, | ||
TInv=args.TInv) | ||
else: | ||
raise NotImplementedError | ||
|
||
if args.milestone is None: | ||
lr_scheduler = MultiStepLR(optimizer, milestones=[int(args.epoch*0.5), int(args.epoch*0.75)], gamma=0.1) | ||
else: | ||
milestone = [int(_) for _ in args.milestone.split(',')] | ||
lr_scheduler = MultiStepLR(optimizer, milestones=milestone, gamma=0.1) | ||
|
||
# init criterion | ||
criterion = nn.CrossEntropyLoss() | ||
|
||
start_epoch = 0 | ||
best_acc = 0 | ||
if args.resume: | ||
print('==> Resuming from checkpoint..') | ||
assert os.path.isfile(args.load_path), 'Error: no checkpoint directory found!' | ||
checkpoint = torch.load(args.load_path) | ||
net.load_state_dict(checkpoint['net']) | ||
best_acc = checkpoint['acc'] | ||
start_epoch = checkpoint['epoch'] | ||
print('==> Loaded checkpoint at epoch: %d, acc: %.2f%%' % (start_epoch, best_acc)) | ||
|
||
# init summary writter | ||
|
||
log_dir = os.path.join(args.log_dir, args.dataset, args.network, args.optimizer, | ||
'lr%.3f_wd%.4f_damping%.4f' % | ||
(args.learning_rate, args.weight_decay, args.damping)) | ||
if not os.path.isdir(log_dir): | ||
os.makedirs(log_dir) | ||
writer = SummaryWriter(log_dir) | ||
|
||
|
||
def train(epoch): | ||
print('\nEpoch: %d' % epoch) | ||
net.train() | ||
train_loss = 0 | ||
correct = 0 | ||
total = 0 | ||
|
||
lr_scheduler.step() | ||
desc = ('[%s][LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)' % | ||
(tag, lr_scheduler.get_lr()[0], 0, 0, correct, total)) | ||
|
||
writer.add_scalar('train/lr', lr_scheduler.get_lr()[0], epoch) | ||
|
||
prog_bar = tqdm(enumerate(trainloader), total=len(trainloader), desc=desc, leave=True) | ||
for batch_idx, (inputs, targets) in prog_bar: | ||
inputs, targets = inputs.to(args.device), targets.to(args.device) | ||
optimizer.zero_grad() | ||
outputs = net(inputs) | ||
loss = criterion(outputs, targets) | ||
if optim_name in ['kfac', 'ekfac'] and optimizer.steps % optimizer.TCov == 0: | ||
# compute true fisher | ||
optimizer.acc_stats = True | ||
with torch.no_grad(): | ||
sampled_y = torch.multinomial(torch.nn.functional.softmax(outputs.cpu().data, dim=1), | ||
1).squeeze().cuda() | ||
loss_sample = criterion(outputs, sampled_y) | ||
loss_sample.backward(retain_graph=True) | ||
optimizer.acc_stats = False | ||
optimizer.zero_grad() # clear the gradient for computing true-fisher. | ||
loss.backward() | ||
optimizer.step() | ||
|
||
train_loss += loss.item() | ||
_, predicted = outputs.max(1) | ||
total += targets.size(0) | ||
correct += predicted.eq(targets).sum().item() | ||
|
||
desc = ('[%s][LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)' % | ||
(tag, lr_scheduler.get_lr()[0], train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) | ||
prog_bar.set_description(desc, refresh=True) | ||
|
||
writer.add_scalar('train/loss', train_loss/(batch_idx + 1), epoch) | ||
writer.add_scalar('train/acc', 100. * correct / total, epoch) | ||
|
||
|
||
def test(epoch): | ||
global best_acc | ||
net.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
total = 0 | ||
desc = ('[%s][LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)' | ||
% (tag,lr_scheduler.get_lr()[0], test_loss/(0+1), 0, correct, total)) | ||
|
||
prog_bar = tqdm(enumerate(testloader), total=len(testloader), desc=desc, leave=True) | ||
with torch.no_grad(): | ||
for batch_idx, (inputs, targets) in prog_bar: | ||
inputs, targets = inputs.to(args.device), targets.to(args.device) | ||
outputs = net(inputs) | ||
loss = criterion(outputs, targets) | ||
|
||
test_loss += loss.item() | ||
_, predicted = outputs.max(1) | ||
total += targets.size(0) | ||
correct += predicted.eq(targets).sum().item() | ||
|
||
desc = ('[%s][LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)' | ||
% (tag, lr_scheduler.get_lr()[0], test_loss / (batch_idx + 1), 100. * correct / total, correct, total)) | ||
prog_bar.set_description(desc, refresh=True) | ||
|
||
# Save checkpoint. | ||
acc = 100.*correct/total | ||
|
||
writer.add_scalar('test/loss', test_loss / (batch_idx + 1), epoch) | ||
writer.add_scalar('test/acc', 100. * correct / total, epoch) | ||
|
||
if acc > best_acc: | ||
print('Saving..') | ||
state = { | ||
'net': net.state_dict(), | ||
'acc': acc, | ||
'epoch': epoch, | ||
'loss': test_loss, | ||
'args': args | ||
} | ||
|
||
torch.save(state, '%s/%s_%s_%s%s_best.t7' % (log_dir, | ||
args.optimizer, | ||
args.dataset, | ||
args.network, | ||
args.depth)) | ||
best_acc = acc | ||
|
||
|
||
def main(): | ||
for epoch in range(start_epoch, args.epoch): | ||
train(epoch) | ||
test(epoch) | ||
return best_acc | ||
|
||
|
||
if __name__ == '__main__': | ||
main() | ||
|
||
|
Empty file.
Oops, something went wrong.