Skip to content

Commit

Permalink
Suppress D*
Browse files Browse the repository at this point in the history
  • Loading branch information
qgp committed Sep 10, 2024
1 parent cd9e57d commit 4f42177
Show file tree
Hide file tree
Showing 2 changed files with 23 additions and 11 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -446,8 +446,8 @@ D0Jet_pp:
components:
sig:
fn: 'Gaussian::peak(m[1.,5.], mean[1.85,1.89], sigma_g1[.01,.08])'
bkg:
fn: 'Gaussian::wide(m, mean, sigma_wide[.05,1.])'
wide:
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
model:
fn: 'SUM::sig(frac_wide[0.,.3]*wide, peak)'
- level: mcrefl
Expand Down Expand Up @@ -530,49 +530,49 @@ D0Jet_pp:
- level: mc
ptrange: [1., 3.]
range: [1.69, 2.04]
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'sigma_wide']
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'n']
components:
model:
fn: 'SUM::sigrefl(frac_refl[0.,1.]*refl, sig)'
- level: mc
ptrange: [3., 4.]
range: [1.68, 2.06]
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'sigma_wide']
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'n']
components:
model:
fn: 'SUM::sigrefl(frac_refl[0.,1.]*refl, sig)'
- level: mc
ptrange: [4., 5.]
range: [1.64, 2.08]
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'sigma_wide']
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'n']
components:
model:
fn: 'SUM::sigrefl(frac_refl[0.,1.]*refl, sig)'
- level: mc
ptrange: [5., 6.]
range: [1.64, 2.10]
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'sigma_wide']
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'n']
components:
model:
fn: 'SUM::sigrefl(frac_refl[0.,1.]*refl, sig)'
- level: mc
ptrange: [6., 8.]
range: [1.60, 2.14]
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'sigma_wide']
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'n']
components:
model:
fn: 'SUM::sigrefl(frac_refl[0.,1.]*refl, sig)'
- level: mc
ptrange: [8., 12.]
range: [1.52, 2.30]
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'sigma_wide']
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'n']
components:
model:
fn: 'SUM::sigrefl(frac_refl[0.,1.]*refl, sig)'
- level: mc
ptrange: [12., 48.]
range: [1.40, 2.40]
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'sigma_wide']
fix_params: ['frac_l', 'mean_l', 'mean_r', 'sigma_l', 'sigma_r', 'frac_wide', 'sigma_g1', 'n']
components:
model:
fn: 'SUM::sigrefl(frac_refl[0.,1.]*refl, sig)'
Expand Down Expand Up @@ -803,7 +803,19 @@ D0Jet_pp:

# Additional cuts applied before mass histogram is filled
use_cuts: True # systematics
cuts: ["mlBkgScore < 0.02", "mlBkgScore < 0.02", "mlBkgScore < 0.02", "mlBkgScore < 0.05", "mlBkgScore < 0.06", "mlBkgScore < 0.08", "mlBkgScore < 0.08", "mlBkgScore < 0.10", "mlBkgScore < 0.10", "mlBkgScore < 0.20", "mlBkgScore < 0.25", "mlBkgScore < 0.30"] # (sel_an_binmin bins) systematics FIXME: Update for new model.
cuts:
- "mlBkgScore < 0.02"
- "mlBkgScore < 0.02"
- "mlBkgScore < 0.02"
- "mlBkgScore < 0.05"
- "mlBkgScore < 0.06"
- "mlBkgScore < 0.08"
- "mlBkgScore < 0.08"
- "mlBkgScore < 0.10"
- "mlBkgScore < 0.10"
- "mlBkgScore < 0.20"
- "mlBkgScore < 0.25"
- "mlBkgScore < 0.30"

systematics: # used in machine_learning_hep/analysis/systematics.py
probvariation:
Expand Down
2 changes: 1 addition & 1 deletion machine_learning_hep/processer_jet.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ def process_histomass_single(self, index):

self._calculate_variables(df)
# FIXME: suppress D*, move to DB
df = df[(abs(df.M_D_pi - 2.01) > .01) & (df.fJetNConstituents == 2)]
df = df[(abs(df.M_D_pi - 2.01) > .01) | (df.fJetNConstituents > 2)]

for obs, spec in self.cfg('observables', {}).items():
self.logger.debug('preparing histograms for %s', obs)
Expand Down

0 comments on commit 4f42177

Please sign in to comment.