Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Miscellanous fixes #956

Merged
merged 5 commits into from
Oct 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion machine_learning_hep/analysis/analyzerdhadrons.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def __init__(self, datap, case, typean, period):
self.d_resultsallpmc = self.d_prefix_mc + dp["mc"]["results"][period] \
if period is not None \
else self.d_prefix_mc + dp["mc"]["resultsallp"]
self.d_resultsallpdata = + dp["data"]["results"][period] \
self.d_resultsallpdata = self.d_prefix_data + dp["data"]["results"][period] \
if period is not None \
else self.d_prefix_data + dp["data"]["resultsallp"]

Expand Down Expand Up @@ -330,17 +330,20 @@ def makenormyields(self): # pylint: disable=import-outside-toplevel, too-many-b
hbkg.Write()
fileoutbkgscaled.Close()

output_prompt = []
hf_pt_spectrum(self.p_anahpt,
self.p_br,
self.p_inputfonllpred,
self.p_fd_method,
None,
fileouteff,
namehistoeffprompt,
namehistoefffeed,
yield_filename,
nameyield,
selnorm,
self.p_sigmamb,
output_prompt,
fileoutcross)

fileoutcrosstot = TFile.Open("%s/finalcross%s%stot.root" %
Expand Down
13 changes: 9 additions & 4 deletions machine_learning_hep/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,8 +62,13 @@ def update_config(database: dict, run_config: dict, database_overwrite=None): #
database["mlapplication"][keys[0]][keys[1]][:] = \
[f"{path}_std" for path in database["mlapplication"][keys[0]][keys[1]]]
# ...set the ML working point all to 0
# except for MultiClassification, where bkg cut of 1 is the loosest one
for k in data_mc:
database["mlapplication"]["probcutpresel"][k][:] = \
[0] * len(database["mlapplication"]["probcutpresel"][k])
database["mlapplication"]["probcutoptimal"][:] \
= [0] * len(database["mlapplication"]["probcutoptimal"])
database["mlapplication"]["probcutpresel"][k] = \
[[1 if i == 0 and database["ml"]["mltype"] == "MultiClassification" else 0 \
for i in range(len(pcut))] \
for pcut in database["mlapplication"]["probcutpresel"][k]]
database["mlapplication"]["probcutoptimal"] = \
[[1 if i == 0 and database["ml"]["mltype"] == "MultiClassification" else 0 \
for i in range(len(pcut))] \
for pcut in database["mlapplication"]["probcutoptimal"]]
6 changes: 6 additions & 0 deletions machine_learning_hep/fitting/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -347,9 +347,15 @@ def get_histograms(self, ibin1, ibin2, get_data=True, get_mc=False, get_reflecti
histo_reflections = None
if get_mc:
histo_mc = file_mc.Get("hmass_sig" + suffix)
if not histo_mc:
file_mc.ls()
raise ValueError("Did not find", "hmass_sig" + suffix)
histo_mc.SetDirectory(0)
if get_reflections:
histo_reflections = file_mc.Get("hmass_refl" + suffix)
if not histo_reflections:
file_mc.ls()
raise ValueError("Did not find", "hmass_refl" + suffix)
histo_reflections.SetDirectory(0)
file_mc.Close()

Expand Down
4 changes: 2 additions & 2 deletions machine_learning_hep/processer.py
Original file line number Diff line number Diff line change
Expand Up @@ -457,8 +457,6 @@ def skim(self, file_index):
write_df(dfgensk, self.mptfiles_gensk[ipt][file_index])

def applymodel(self, file_index):
from machine_learning_hep.models import \
apply # pylint: disable=import-error, import-outside-toplevel
for ipt in range(self.p_nptbins):
if os.path.exists(self.mptfiles_recoskmldec[ipt][file_index]):
if os.stat(self.mptfiles_recoskmldec[ipt][file_index]).st_size != 0:
Expand All @@ -467,6 +465,8 @@ def applymodel(self, file_index):
if self.p_mask_values:
mask_df(dfrecosk, self.p_mask_values)
if self.doml is True:
from machine_learning_hep.models import \
qgp marked this conversation as resolved.
Show resolved Hide resolved
apply # pylint: disable=import-error, import-outside-toplevel
if os.path.isfile(self.lpt_model[ipt]) is False:
print("Model file not present in bin %d" % ipt)
with openfile(self.lpt_model[ipt], 'rb') as mod_file:
Expand Down