-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
import os | ||
import time | ||
|
||
os.environ["JAXSIM_DISABLE_EXCEPTIONS"] = "0" | ||
os.environ["JAX_ENABLE_X64"] = "0" | ||
|
||
import jaxsim.api as js | ||
import pathlib | ||
from jaxsim import VelRepr | ||
import jax.numpy as jnp | ||
import jax | ||
from jaxsim.rbda.contacts.relaxed_rigid import ( | ||
RelaxedRigidContacts, | ||
RelaxedRigidContactsParams, | ||
) | ||
import pandas as pd | ||
import mujoco | ||
from mujoco import mjx | ||
|
||
|
||
try: | ||
os.environ["ROBOT_DESCRIPTION_COMMIT"] = "v0.7.1" | ||
|
||
import robot_descriptions.ergocub_description | ||
|
||
finally: | ||
_ = os.environ.pop("ROBOT_DESCRIPTION_COMMIT", None) | ||
|
||
model_urdf_path = pathlib.Path( | ||
robot_descriptions.ergocub_description.URDF_PATH.replace( | ||
"ergoCubSN000", "ergoCubSN001" | ||
) | ||
) | ||
|
||
model_full = js.model.JaxSimModel.build_from_model_description( | ||
model_description=model_urdf_path, | ||
contact_model=RelaxedRigidContacts.build(solver_options={"maxiter": 6}), | ||
time_step=0.002, | ||
contact_params=RelaxedRigidContactsParams.build( | ||
d_min=0.9, | ||
d_max=0.95, | ||
width=1e-3, | ||
midpoint=0.5, | ||
power=2.0, | ||
time_constant=0.02, | ||
damping_coefficient=1.0, | ||
mu=5e-3, | ||
), | ||
) | ||
|
||
reduced_joints = tuple( | ||
j | ||
for j in model_full.joint_names() | ||
if "camera" not in j | ||
# Remove head and hands. | ||
and "neck" not in j | ||
and "wrist" not in j | ||
and "thumb" not in j | ||
and "index" not in j | ||
and "middle" not in j | ||
and "ring" not in j | ||
and "pinkie" not in j | ||
) | ||
|
||
js_model = js.model.reduce(model=model_full, considered_joints=reduced_joints) | ||
js_model = jax.device_put(js_model) | ||
js_data = js.data.JaxSimModelData.build(model=js_model) | ||
js_data = jax.device_put(js_data) | ||
|
||
|
||
mj_model = mujoco.MjModel.from_xml_path("muj_model.xml") | ||
mj_model.opt.solver = mujoco.mjtSolver.mjSOL_CG | ||
mj_model.opt.iterations = 6 | ||
mj_model.opt.ls_iterations = 6 | ||
mj_data = mujoco.MjData(mj_model) | ||
mujoco.mj_resetData(mj_model, mj_data) | ||
mjx_model = mjx.put_model(mj_model) | ||
mjx_data = mjx.put_data(mj_model, mj_data) | ||
|
||
|
||
def benchmark_jaxsim(num_envs): | ||
data = jax.vmap( | ||
lambda W_p_B: js.data.JaxSimModelData.build( | ||
model=js_model, | ||
velocity_representation=VelRepr.Mixed, | ||
base_position=W_p_B, | ||
) | ||
)(jnp.repeat(js_data.base_position, num_envs, axis=0).reshape((num_envs, 3))) | ||
|
||
|
||
length = 1000 | ||
def scan(d): | ||
@jax.vmap | ||
def scan_body(d, _): | ||
d = js.model.step(js_model, d) | ||
return d, None | ||
d, _ = jax.lax.scan(scan_body, d, None, length=length) | ||
return d | ||
|
||
t1 = time.perf_counter() | ||
scan = jax.jit(scan).lower(data).compile() | ||
compile_time = time.perf_counter() - t1 | ||
|
||
start = time.perf_counter() | ||
out = scan(data) | ||
jax.block_until_ready(out) | ||
end = time.perf_counter() | ||
|
||
return (end - start) / length, compile_time | ||
|
||
|
||
def benchmark_mjx(num_envs): | ||
rng = jax.random.PRNGKey(0) | ||
rng = jax.random.split(rng, num_envs) | ||
data = jax.vmap(lambda rng: mjx_data.replace(qpos=jax.random.uniform(rng, (27,))))(rng) | ||
|
||
length = 1000 | ||
def scan(d): | ||
@jax.vmap | ||
def scan_body(d, _): | ||
d = mjx.step(mjx_model, d) | ||
return d, None | ||
d, _ = jax.lax.scan(scan_body, d, None, length=length) | ||
return d | ||
|
||
t1 = time.perf_counter() | ||
scan = jax.jit(scan).lower(data).compile() | ||
compile_time = time.perf_counter() - t1 | ||
|
||
start = time.perf_counter() | ||
out = scan(data) | ||
jax.block_until_ready(out) | ||
end = time.perf_counter() | ||
|
||
return (end - start) / length, compile_time | ||
|
||
if __name__ == "__main__": | ||
js_times, mjx_times = [],[] | ||
batch_sizes =[8, 32, 128, 512, 2048, 8192] | ||
for num_envs in batch_sizes: | ||
js_run_time, js_compile_time = benchmark_jaxsim(num_envs) | ||
mjx_run_time, mjx_compile_time = benchmark_mjx(num_envs) | ||
js_sps = (1 / js_run_time) * num_envs | ||
js_times.append(js_sps) | ||
mjx_sps = (1 / mjx_run_time) * num_envs | ||
mjx_times.append(mjx_sps) | ||
|
||
print('-'*20, 'num_envs:', num_envs, '-'*20) | ||
print(f"JaxSim, time: {int(js_sps)} SPS, compile_time: {js_compile_time}") | ||
print(f"MJX, time: {int(mjx_sps)} SPS, compile_time: {mjx_compile_time}") | ||
|
||
df = pd.DataFrame([js_times, mjx_times], index=["JaxSim", "MJX"], columns=batch_sizes) | ||
print(df) | ||
df.to_csv("bench.csv") | ||
|
||
|