-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
GH-41301: [C++] Extract the kernel loops used for PrimitiveTakeExec a…
…nd generalize to any fixed-width type (#41373) ### Rationale for this change I want to instantiate this primitive operation in other scenarios (e.g. the optimized version of `Take` that handles chunked arrays) and extend the sub-classes of `GatherCRTP` with different member functions that re-use the `WriteValue` function generically (any fixed-width type and even bit-wide booleans). When taking these improvements to `Filter` I will also re-use the "gather" concept and parameterize it by bitmaps/boolean-arrays instead of selection vectors (`indices`) like `take` does. So gather is not a "renaming of take" but rather a generalization of `take` and `filter` do in Arrow with different representations of what should be gathered from the `values` array. ### What changes are included in this PR? - Introduce the Gather class helper to delegate fixed-width memory gathering: both static and dynamically sized (size known at compile time or size known at runtime) - Specialized `Take` implementation for values/indices without nulls - Fold the Boolean, Primitives, and Fixed-Width Binary implementation of `Take` into a single one - Skip validity bitmap allocation when inputs (values and indices) have no nulls ### Are these changes tested? - Existing tests - New test assertions that check that `Take` guarantees null values are zeroed out * GitHub Issue: #41301 Authored-by: Felipe Oliveira Carvalho <[email protected]> Signed-off-by: Felipe Oliveira Carvalho <[email protected]>
- Loading branch information
Showing
5 changed files
with
435 additions
and
334 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,306 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
#pragma once | ||
|
||
#include <cassert> | ||
#include <cstddef> | ||
#include <cstdint> | ||
|
||
#include "arrow/array/data.h" | ||
#include "arrow/util/bit_block_counter.h" | ||
#include "arrow/util/bit_run_reader.h" | ||
#include "arrow/util/bit_util.h" | ||
#include "arrow/util/bitmap_ops.h" | ||
#include "arrow/util/macros.h" | ||
|
||
// Implementation helpers for kernels that need to load/gather fixed-width | ||
// data from multiple, arbitrary indices. | ||
// | ||
// https://en.wikipedia.org/wiki/Gather/scatter_(vector_addressing) | ||
|
||
namespace arrow::internal { | ||
|
||
// CRTP [1] base class for Gather that provides a gathering loop in terms of | ||
// Write*() methods that must be implemented by the derived class. | ||
// | ||
// [1] https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern | ||
template <class GatherImpl> | ||
class GatherBaseCRTP { | ||
public: | ||
// Output offset is not supported by Gather and idx is supposed to have offset | ||
// pre-applied. idx_validity parameters on functions can use the offset they | ||
// carry to read the validity bitmap as bitmaps can't have pre-applied offsets | ||
// (they might not align to byte boundaries). | ||
|
||
GatherBaseCRTP() = default; | ||
ARROW_DISALLOW_COPY_AND_ASSIGN(GatherBaseCRTP); | ||
ARROW_DEFAULT_MOVE_AND_ASSIGN(GatherBaseCRTP); | ||
|
||
protected: | ||
ARROW_FORCE_INLINE int64_t ExecuteNoNulls(int64_t idx_length) { | ||
auto* self = static_cast<GatherImpl*>(this); | ||
for (int64_t position = 0; position < idx_length; position++) { | ||
self->WriteValue(position); | ||
} | ||
return idx_length; | ||
} | ||
|
||
// See derived Gather classes below for the meaning of the parameters, pre and | ||
// post-conditions. | ||
// | ||
// src_validity is not necessarily the source of the values that are being | ||
// gathered (e.g. the source could be a nested fixed-size list array and the | ||
// values being gathered are from the innermost buffer), so the ArraySpan is | ||
// used solely to check for nulls in the source values and nothing else. | ||
// | ||
// idx_length is the number of elements in idx and consequently the number of | ||
// bits that might be written to out_is_valid. Member `Write*()` functions will be | ||
// called with positions from 0 to idx_length - 1. | ||
// | ||
// If `kOutputIsZeroInitialized` is true, then `WriteZero()` or `WriteZeroSegment()` | ||
// doesn't have to be called for resulting null positions. A position is | ||
// considered null if either the index or the source value is null at that | ||
// position. | ||
template <bool kOutputIsZeroInitialized, typename IndexCType> | ||
ARROW_FORCE_INLINE int64_t ExecuteWithNulls(const ArraySpan& src_validity, | ||
int64_t idx_length, const IndexCType* idx, | ||
const ArraySpan& idx_validity, | ||
uint8_t* out_is_valid) { | ||
auto* self = static_cast<GatherImpl*>(this); | ||
OptionalBitBlockCounter indices_bit_counter(idx_validity.buffers[0].data, | ||
idx_validity.offset, idx_length); | ||
int64_t position = 0; | ||
int64_t valid_count = 0; | ||
while (position < idx_length) { | ||
BitBlockCount block = indices_bit_counter.NextBlock(); | ||
if (!src_validity.MayHaveNulls()) { | ||
// Source values are never null, so things are easier | ||
valid_count += block.popcount; | ||
if (block.popcount == block.length) { | ||
// Fastest path: neither source values nor index nulls | ||
bit_util::SetBitsTo(out_is_valid, position, block.length, true); | ||
for (int64_t i = 0; i < block.length; ++i) { | ||
self->WriteValue(position); | ||
++position; | ||
} | ||
} else if (block.popcount > 0) { | ||
// Slow path: some indices but not all are null | ||
for (int64_t i = 0; i < block.length; ++i) { | ||
ARROW_COMPILER_ASSUME(idx_validity.buffers[0].data != nullptr); | ||
if (idx_validity.IsValid(position)) { | ||
// index is not null | ||
bit_util::SetBit(out_is_valid, position); | ||
self->WriteValue(position); | ||
} else if constexpr (!kOutputIsZeroInitialized) { | ||
self->WriteZero(position); | ||
} | ||
++position; | ||
} | ||
} else { | ||
self->WriteZeroSegment(position, block.length); | ||
position += block.length; | ||
} | ||
} else { | ||
// Source values may be null, so we must do random access into src_validity | ||
if (block.popcount == block.length) { | ||
// Faster path: indices are not null but source values may be | ||
for (int64_t i = 0; i < block.length; ++i) { | ||
ARROW_COMPILER_ASSUME(src_validity.buffers[0].data != nullptr); | ||
if (src_validity.IsValid(idx[position])) { | ||
// value is not null | ||
self->WriteValue(position); | ||
bit_util::SetBit(out_is_valid, position); | ||
++valid_count; | ||
} else if constexpr (!kOutputIsZeroInitialized) { | ||
self->WriteZero(position); | ||
} | ||
++position; | ||
} | ||
} else if (block.popcount > 0) { | ||
// Slow path: some but not all indices are null. Since we are doing | ||
// random access in general we have to check the value nullness one by | ||
// one. | ||
for (int64_t i = 0; i < block.length; ++i) { | ||
ARROW_COMPILER_ASSUME(src_validity.buffers[0].data != nullptr); | ||
ARROW_COMPILER_ASSUME(idx_validity.buffers[0].data != nullptr); | ||
if (idx_validity.IsValid(position) && src_validity.IsValid(idx[position])) { | ||
// index is not null && value is not null | ||
self->WriteValue(position); | ||
bit_util::SetBit(out_is_valid, position); | ||
++valid_count; | ||
} else if constexpr (!kOutputIsZeroInitialized) { | ||
self->WriteZero(position); | ||
} | ||
++position; | ||
} | ||
} else { | ||
if constexpr (!kOutputIsZeroInitialized) { | ||
self->WriteZeroSegment(position, block.length); | ||
} | ||
position += block.length; | ||
} | ||
} | ||
} | ||
return valid_count; | ||
} | ||
}; | ||
|
||
// A gather primitive for primitive fixed-width types with a integral byte width. If | ||
// `kWithFactor` is true, the actual width is a runtime multiple of `kValueWidthInbits` | ||
// (this can be useful for fixed-size list inputs and other input types with unusual byte | ||
// widths that don't deserve value specialization). | ||
template <int kValueWidthInBits, typename IndexCType, bool kWithFactor> | ||
class Gather : public GatherBaseCRTP<Gather<kValueWidthInBits, IndexCType, kWithFactor>> { | ||
public: | ||
static_assert(kValueWidthInBits >= 0 && kValueWidthInBits % 8 == 0); | ||
static constexpr int kValueWidth = kValueWidthInBits / 8; | ||
|
||
private: | ||
const int64_t src_length_; // number of elements of kValueWidth bytes in src_ | ||
const uint8_t* src_; | ||
const int64_t idx_length_; // number IndexCType elements in idx_ | ||
const IndexCType* idx_; | ||
uint8_t* out_; | ||
int64_t factor_; | ||
|
||
public: | ||
void WriteValue(int64_t position) { | ||
if constexpr (kWithFactor) { | ||
const int64_t scaled_factor = kValueWidth * factor_; | ||
memcpy(out_ + position * scaled_factor, src_ + idx_[position] * scaled_factor, | ||
scaled_factor); | ||
} else { | ||
memcpy(out_ + position * kValueWidth, src_ + idx_[position] * kValueWidth, | ||
kValueWidth); | ||
} | ||
} | ||
|
||
void WriteZero(int64_t position) { | ||
if constexpr (kWithFactor) { | ||
const int64_t scaled_factor = kValueWidth * factor_; | ||
memset(out_ + position * scaled_factor, 0, scaled_factor); | ||
} else { | ||
memset(out_ + position * kValueWidth, 0, kValueWidth); | ||
} | ||
} | ||
|
||
void WriteZeroSegment(int64_t position, int64_t length) { | ||
if constexpr (kWithFactor) { | ||
const int64_t scaled_factor = kValueWidth * factor_; | ||
memset(out_ + position * scaled_factor, 0, length * scaled_factor); | ||
} else { | ||
memset(out_ + position * kValueWidth, 0, length * kValueWidth); | ||
} | ||
} | ||
|
||
public: | ||
Gather(int64_t src_length, const uint8_t* src, int64_t zero_src_offset, | ||
int64_t idx_length, const IndexCType* idx, uint8_t* out, int64_t factor) | ||
: src_length_(src_length), | ||
src_(src), | ||
idx_length_(idx_length), | ||
idx_(idx), | ||
out_(out), | ||
factor_(factor) { | ||
assert(zero_src_offset == 0); | ||
assert(src && idx && out); | ||
assert((kWithFactor || factor == 1) && | ||
"When kWithFactor is false, the factor is assumed to be 1 at compile time"); | ||
} | ||
|
||
ARROW_FORCE_INLINE int64_t Execute() { return this->ExecuteNoNulls(idx_length_); } | ||
|
||
/// \pre If kOutputIsZeroInitialized, then this->out_ has to be zero initialized. | ||
/// \pre Bits in out_is_valid have to always be zero initialized. | ||
/// \post The bits for the valid elements (and only those) are set in out_is_valid. | ||
/// \post If !kOutputIsZeroInitialized, then positions in this->_out containing null | ||
/// elements have 0s written to them. This might be less efficient than | ||
/// zero-initializing first and calling this->Execute() afterwards. | ||
/// \return The number of valid elements in out. | ||
template <bool kOutputIsZeroInitialized = false> | ||
ARROW_FORCE_INLINE int64_t Execute(const ArraySpan& src_validity, | ||
const ArraySpan& idx_validity, | ||
uint8_t* out_is_valid) { | ||
assert(src_length_ == src_validity.length); | ||
assert(idx_length_ == idx_validity.length); | ||
assert(out_is_valid); | ||
return this->template ExecuteWithNulls<kOutputIsZeroInitialized>( | ||
src_validity, idx_length_, idx_, idx_validity, out_is_valid); | ||
} | ||
}; | ||
|
||
// A gather primitive for boolean inputs. Unlike its counterpart above, | ||
// this does not support passing a non-trivial factor parameter. | ||
template <typename IndexCType> | ||
class Gather</*kValueWidthInBits=*/1, IndexCType, /*kWithFactor=*/false> | ||
: public GatherBaseCRTP<Gather<1, IndexCType, false>> { | ||
private: | ||
const int64_t src_length_; // number of elements of bits bytes in src_ after offset | ||
const uint8_t* src_; // the boolean array data buffer in bits | ||
const int64_t src_offset_; // offset in bits | ||
const int64_t idx_length_; // number IndexCType elements in idx_ | ||
const IndexCType* idx_; | ||
uint8_t* out_; // output boolean array data buffer in bits | ||
|
||
public: | ||
Gather(int64_t src_length, const uint8_t* src, int64_t src_offset, int64_t idx_length, | ||
const IndexCType* idx, uint8_t* out, int64_t factor) | ||
: src_length_(src_length), | ||
src_(src), | ||
src_offset_(src_offset), | ||
idx_length_(idx_length), | ||
idx_(idx), | ||
out_(out) { | ||
assert(src && idx && out); | ||
assert(factor == 1 && | ||
"factor != 1 is not supported when Gather is used to gather bits/booleans"); | ||
} | ||
|
||
void WriteValue(int64_t position) { | ||
bit_util::SetBitTo(out_, position, | ||
bit_util::GetBit(src_, src_offset_ + idx_[position])); | ||
} | ||
|
||
void WriteZero(int64_t position) { bit_util::ClearBit(out_, position); } | ||
|
||
void WriteZeroSegment(int64_t position, int64_t block_length) { | ||
bit_util::SetBitsTo(out_, position, block_length, false); | ||
} | ||
|
||
ARROW_FORCE_INLINE int64_t Execute() { return this->ExecuteNoNulls(idx_length_); } | ||
|
||
/// \pre If kOutputIsZeroInitialized, then this->out_ has to be zero initialized. | ||
/// \pre Bits in out_is_valid have to always be zero initialized. | ||
/// \post The bits for the valid elements (and only those) are set in out_is_valid. | ||
/// \post If !kOutputIsZeroInitialized, then positions in this->_out containing null | ||
/// elements have 0s written to them. This might be less efficient than | ||
/// zero-initializing first and calling this->Execute() afterwards. | ||
/// \return The number of valid elements in out. | ||
template <bool kOutputIsZeroInitialized = false> | ||
ARROW_FORCE_INLINE int64_t Execute(const ArraySpan& src_validity, | ||
const ArraySpan& idx_validity, | ||
uint8_t* out_is_valid) { | ||
assert(src_length_ == src_validity.length); | ||
assert(idx_length_ == idx_validity.length); | ||
assert(out_is_valid); | ||
return this->template ExecuteWithNulls<kOutputIsZeroInitialized>( | ||
src_validity, idx_length_, idx_, idx_validity, out_is_valid); | ||
} | ||
}; | ||
|
||
} // namespace arrow::internal |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.