Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GH-32566: [C++] Connect parquet to the new scan node #35889

Closed
wants to merge 13 commits into from
77 changes: 77 additions & 0 deletions cpp/src/arrow/acero/sink_node_test.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

#include <gmock/gmock-matchers.h>
#include <gtest/gtest.h>

#include <chrono>
#include <memory>

#include "arrow/acero/exec_plan.h"
#include "arrow/acero/options.h"
#include "arrow/dataset/file_base.h"
#include "arrow/dataset/file_parquet.h"
#include "arrow/dataset/partition.h"
#include "arrow/filesystem/mockfs.h"
#include "arrow/testing/generator.h"
#include "arrow/testing/gtest_util.h"
#include "arrow/testing/matchers.h"

#include "arrow/table.h"
#include "arrow/util/key_value_metadata.h"

namespace arrow {

namespace acero {

TEST(SinkNode, CustomFieldMetadata) {
// Create an input table with a nullable and a non-nullable type
ExecBatch batch = gen::Gen({gen::Step()})->FailOnError()->ExecBatch(/*num_rows=*/1);
std::shared_ptr<Schema> test_schema =
schema({field("nullable_i32", uint32(), /*nullable=*/true,
key_value_metadata({{"foo", "bar"}})),
field("non_nullable_i32", uint32(), /*nullable=*/false)});
std::shared_ptr<RecordBatch> record_batch =
RecordBatch::Make(test_schema, /*num_rows=*/1,
{batch.values[0].make_array(), batch.values[0].make_array()});
ASSERT_OK_AND_ASSIGN(std::shared_ptr<Table> table,
Table::FromRecordBatches({std::move(record_batch)}));

ASSERT_TRUE(table->field(0)->nullable());
ASSERT_EQ(1, table->field(0)->metadata()->keys().size());
ASSERT_FALSE(table->field(1)->nullable());
ASSERT_EQ(0, table->field(1)->metadata()->keys().size());

Declaration plan = Declaration::Sequence(
{{"table_source", TableSourceNodeOptions(std::move(table))},
{"project", ProjectNodeOptions({compute::field_ref(0), compute::field_ref(1)})}});

ASSERT_OK_AND_ASSIGN(std::shared_ptr<Table> out_table, DeclarationToTable(plan));

ASSERT_TRUE(table->field(0)->nullable());
ASSERT_EQ(1, table->field(0)->metadata()->keys().size());
ASSERT_FALSE(table->field(1)->nullable());
ASSERT_EQ(0, table->field(1)->metadata()->keys().size());

ASSERT_OK_AND_ASSIGN(BatchesWithCommonSchema batches_and_schema,
DeclarationToExecBatches(plan));
ASSERT_TRUE(batches_and_schema.schema->field(0)->nullable());
ASSERT_FALSE(batches_and_schema.schema->field(1)->nullable());
}

} // namespace acero
} // namespace arrow
2 changes: 2 additions & 0 deletions cpp/src/arrow/compute/key_map_avx2.cc
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@
#include "arrow/compute/key_map.h"
#include "arrow/util/logging.h"

#include "arrow/util/logging.h"

namespace arrow {
namespace compute {

Expand Down
57 changes: 39 additions & 18 deletions cpp/src/arrow/dataset/dataset.cc
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
// specific language governing permissions and limitations
// under the License.

#include <limits>
#include <memory>
#include <utility>

Expand Down Expand Up @@ -44,13 +45,31 @@ Fragment::Fragment(compute::Expression partition_expression,
physical_schema_(std::move(physical_schema)) {}

Future<std::shared_ptr<InspectedFragment>> Fragment::InspectFragment(
const FragmentScanOptions* format_options, compute::ExecContext* exec_context,
bool should_cache) {
util::Mutex::Guard lk = physical_schema_mutex_.Lock();
if (cached_inspected_fragment_) {
return cached_inspected_fragment_;
}
lk.Unlock();
return InspectFragmentImpl(format_options, exec_context)
.Then([this, should_cache](const std::shared_ptr<InspectedFragment>& frag) {
if (should_cache) {
util::Mutex::Guard lk = physical_schema_mutex_.Lock();
cached_inspected_fragment_ = frag;
}
return frag;
});
}

Future<std::shared_ptr<InspectedFragment>> Fragment::InspectFragmentImpl(
const FragmentScanOptions* format_options, compute::ExecContext* exec_context) {
return Status::NotImplemented("Inspect fragment");
}

Future<std::shared_ptr<FragmentScanner>> Fragment::BeginScan(
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
const FragmentScanOptions* format_options, compute::ExecContext* exec_context) {
compute::ExecContext* exec_context) {
return Status::NotImplemented("New scan method");
}

Expand Down Expand Up @@ -156,42 +175,44 @@ Future<std::optional<int64_t>> InMemoryFragment::CountRows(
return Future<std::optional<int64_t>>::MakeFinished(total);
}

Future<std::shared_ptr<InspectedFragment>> InMemoryFragment::InspectFragment(
Future<std::shared_ptr<InspectedFragment>> InMemoryFragment::InspectFragmentImpl(
const FragmentScanOptions* format_options, compute::ExecContext* exec_context) {
return std::make_shared<InspectedFragment>(physical_schema_->field_names());
}

class InMemoryFragment::Scanner : public FragmentScanner {
public:
explicit Scanner(InMemoryFragment* fragment) : fragment_(fragment) {}
explicit Scanner(std::vector<std::shared_ptr<RecordBatch>> batches)
: batches_(std::move(batches)) {}

Future<std::shared_ptr<RecordBatch>> ScanBatch(int batch_number) override {
return Future<std::shared_ptr<RecordBatch>>::MakeFinished(
fragment_->record_batches_[batch_number]);
AsyncGenerator<std::shared_ptr<RecordBatch>> RunScanTask(int batch_number) override {
DCHECK_EQ(batch_number, 0);
return MakeVectorGenerator(std::move(batches_));
}

int64_t EstimatedDataBytes(int batch_number) override {
return arrow::util::TotalBufferSize(*fragment_->record_batches_[batch_number]);
}
int NumScanTasks() override { return 1; }

int NumBatches() override {
return static_cast<int>(fragment_->record_batches_.size());
int NumBatchesInScanTask(int task_number) override {
DCHECK_LE(batches_.size(), std::numeric_limits<int32_t>::max());
return static_cast<int>(batches_.size());
}

private:
InMemoryFragment* fragment_;
std::vector<std::shared_ptr<RecordBatch>> batches_;
};

Future<std::shared_ptr<FragmentScanner>> InMemoryFragment::BeginScan(
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
const FragmentScanOptions* format_options, compute::ExecContext* exec_context) {
compute::ExecContext* exec_context) {
return Future<std::shared_ptr<FragmentScanner>>::MakeFinished(
std::make_shared<InMemoryFragment::Scanner>(this));
std::make_shared<InMemoryFragment::Scanner>(record_batches_));
}

Dataset::Dataset(std::shared_ptr<Schema> schema, compute::Expression partition_expression)
Dataset::Dataset(std::shared_ptr<Schema> schema, compute::Expression partition_expression,
bool should_cache_metadata)
: schema_(std::move(schema)),
partition_expression_(std::move(partition_expression)) {}
partition_expression_(std::move(partition_expression)),
should_cache_metadata_(should_cache_metadata) {}

Result<std::shared_ptr<ScannerBuilder>> Dataset::NewScan() {
return std::make_shared<ScannerBuilder>(this->shared_from_this());
Expand Down Expand Up @@ -246,7 +267,7 @@ struct VectorRecordBatchGenerator : InMemoryDataset::RecordBatchGenerator {

InMemoryDataset::InMemoryDataset(std::shared_ptr<Schema> schema,
RecordBatchVector batches)
: Dataset(std::move(schema)),
: Dataset(std::move(schema), /*should_cache_metadata=*/false),
get_batches_(new VectorRecordBatchGenerator(std::move(batches))) {}

struct TableRecordBatchGenerator : InMemoryDataset::RecordBatchGenerator {
Expand All @@ -263,7 +284,7 @@ struct TableRecordBatchGenerator : InMemoryDataset::RecordBatchGenerator {
};

InMemoryDataset::InMemoryDataset(std::shared_ptr<Table> table)
: Dataset(table->schema()),
: Dataset(table->schema(), /*should_cache_metadata=*/false),
get_batches_(new TableRecordBatchGenerator(std::move(table))) {}

Result<std::shared_ptr<Dataset>> InMemoryDataset::ReplaceSchema(
Expand Down
97 changes: 79 additions & 18 deletions cpp/src/arrow/dataset/dataset.h
Original file line number Diff line number Diff line change
Expand Up @@ -109,25 +109,58 @@ struct ARROW_DS_EXPORT FragmentScanRequest {
const FragmentScanOptions* format_scan_options;
};

/// \brief An iterator-like object that can yield batches created from a fragment
/// \brief An abstraction over (potentially parallel) reading of a fragment
class ARROW_DS_EXPORT FragmentScanner {
public:
/// This instance will only be destroyed after all ongoing scan futures
/// This instance will only be destroyed after all ongoing scan tasks
/// have been completed.
///
/// This means any callbacks created as part of the scan can safely
/// capture `this`
virtual ~FragmentScanner() = default;
/// \brief Scan a batch of data from the file
/// \param batch_number The index of the batch to read
virtual Future<std::shared_ptr<RecordBatch>> ScanBatch(int batch_number) = 0;
/// \brief Calculate an estimate of how many data bytes the given batch will represent
/// \brief Run a task to scan a batches of data from a file
///
/// "Data bytes" should be the total size of all the buffers once the data has been
/// decoded into the Arrow format.
virtual int64_t EstimatedDataBytes(int batch_number) = 0;
/// \brief The number of batches in the fragment to scan
virtual int NumBatches() = 0;
/// Each scan task will generate a sequence of batches. If a file supports multiple
/// scan tasks then the scan tasks should be able to run in parallel.
///
/// For example, the CSV scanner currently generates a single stream of batches from
/// the start of the file to the end. It is not capable of reading batches in parallel
/// and so there is a single scan task.
///
/// The parquet scanner can read from different row groups concurrently. Each row group
/// generates a sequence of batches (row groups can be very large and we may not want
/// to read the row group into memory all at once).
///
/// Multiple scan tasks will be launched in parallel. In other words, RunScanTask
/// will be called async-reentrantly (it will be called again before the future it
/// returns finishes)
///
/// However, RunScanTask will not be called sync-reentrantly (it will not be
/// called again while a call to this method is in progress) and it will be called
/// in order.
///
/// For example, RunScanTask(5) will always be called after RunScanTask(4) yet the
/// batches from scan task 4 may arrive before the batches from scan task 5 and this is
/// ok. If the user desires ordered execution then batches will be sequenced later.
///
/// \param task_number The index of the scan task to execute
virtual AsyncGenerator<std::shared_ptr<RecordBatch>> RunScanTask(int task_number) = 0;

/// \brief The total number of scan tasks that will be run
virtual int NumScanTasks() = 0;

static constexpr int kUnknownNumberOfBatches = -1;
/// \brief The total number of batches that will be delivered by a scan task
///
/// Ideally, this will be known in advance by inspecting the metadata. A fragment
/// scanner may choose to emit empty batches in order to respect this value.
///
/// If it is not possible to know this in advance, then a fragment may return
/// FragmentScanner::kUnknownNumberOfBatches. Note that doing so will have a
/// significant negative effect on scan parallelism because a scan task will not start
/// until we have determined how many batches precede it. This means that any scan
/// tasks following this one will have to wait until this scan task is fully exhausted.
virtual int NumBatchesInScanTask(int task_number) = 0;
};

/// \brief Information learned about a fragment through inspection
Expand All @@ -140,8 +173,11 @@ class ARROW_DS_EXPORT FragmentScanner {
/// names and use those column names to determine which columns to load
/// from the CSV file.
struct ARROW_DS_EXPORT InspectedFragment {
virtual ~InspectedFragment() = default;

explicit InspectedFragment(std::vector<std::string> column_names)
: column_names(std::move(column_names)) {}

std::vector<std::string> column_names;
};

Expand Down Expand Up @@ -175,12 +211,13 @@ class ARROW_DS_EXPORT Fragment : public std::enable_shared_from_this<Fragment> {
/// information will be needed to figure out an evolution strategy. This information
/// will then be passed to the call to BeginScan
virtual Future<std::shared_ptr<InspectedFragment>> InspectFragment(
const FragmentScanOptions* format_options, compute::ExecContext* exec_context);
const FragmentScanOptions* format_options, compute::ExecContext* exec_context,
bool should_cache);

/// \brief Start a scan operation
virtual Future<std::shared_ptr<FragmentScanner>> BeginScan(
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
const FragmentScanOptions* format_options, compute::ExecContext* exec_context);
compute::ExecContext* exec_context);

/// \brief Count the number of rows in this fragment matching the filter using metadata
/// only. That is, this method may perform I/O, but will not load data.
Expand All @@ -206,11 +243,14 @@ class ARROW_DS_EXPORT Fragment : public std::enable_shared_from_this<Fragment> {
explicit Fragment(compute::Expression partition_expression,
std::shared_ptr<Schema> physical_schema);

virtual Future<std::shared_ptr<InspectedFragment>> InspectFragmentImpl(
const FragmentScanOptions* format_options, compute::ExecContext* exec_context);
virtual Result<std::shared_ptr<Schema>> ReadPhysicalSchemaImpl() = 0;

util::Mutex physical_schema_mutex_;
compute::Expression partition_expression_ = compute::literal(true);
std::shared_ptr<Schema> physical_schema_;
std::shared_ptr<InspectedFragment> cached_inspected_fragment_;
};

/// \brief Per-scan options for fragment(s) in a dataset.
Expand Down Expand Up @@ -248,12 +288,11 @@ class ARROW_DS_EXPORT InMemoryFragment : public Fragment {
compute::Expression predicate,
const std::shared_ptr<ScanOptions>& options) override;

Future<std::shared_ptr<InspectedFragment>> InspectFragment(
Future<std::shared_ptr<InspectedFragment>> InspectFragmentImpl(
const FragmentScanOptions* format_options,
compute::ExecContext* exec_context) override;
Future<std::shared_ptr<FragmentScanner>> BeginScan(
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
const FragmentScanOptions* format_options,
compute::ExecContext* exec_context) override;

std::string type_name() const override { return "in-memory"; }
Expand Down Expand Up @@ -348,6 +387,19 @@ MakeBasicDatasetEvolutionStrategy();
/// A Dataset acts as a union of Fragments, e.g. files deeply nested in a
/// directory. A Dataset has a schema to which Fragments must align during a
/// scan operation. This is analogous to Avro's reader and writer schema.
///
/// It is assumed that a dataset will always generate fragments in the same
/// order. Data in a dataset thus has an "implicit order" which is first
/// decided by the fragment index and then the row index in a fragment. For
/// example, row 1 in fragment 10 comes after the last row in fragment 9.
///
/// A dataset will cache metadata by default. This will enable future scans
/// to be faster since they can skip some of the initial read steps. However,
/// if the dataset has many files, or if the file metadata itself is large, this
/// cached metadata could occupy a large amount of RAM.
///
/// Metadata should not be cached if the contents of the files are expected
/// to change between scans.
class ARROW_DS_EXPORT Dataset : public std::enable_shared_from_this<Dataset> {
public:
/// \brief Begin to build a new Scan operation against this Dataset
Expand Down Expand Up @@ -385,9 +437,15 @@ class ARROW_DS_EXPORT Dataset : public std::enable_shared_from_this<Dataset> {
virtual ~Dataset() = default;

protected:
explicit Dataset(std::shared_ptr<Schema> schema) : schema_(std::move(schema)) {}
/// \brief Create a new dataset
/// \param schema the dataset schema. This is the unified schema across all fragments
/// \param should_cache_metadata if true then this dataset instance should try and cache
/// metadata information during a scan.
explicit Dataset(std::shared_ptr<Schema> schema, bool should_cache_metadata = true)
: schema_(std::move(schema)), should_cache_metadata_(should_cache_metadata) {}

Dataset(std::shared_ptr<Schema> schema, compute::Expression partition_expression);
Dataset(std::shared_ptr<Schema> schema, compute::Expression partition_expression,
bool should_cache_metadata = true);

virtual Result<FragmentIterator> GetFragmentsImpl(compute::Expression predicate) = 0;
/// \brief Default non-virtual implementation method for the base
Expand All @@ -405,6 +463,8 @@ class ARROW_DS_EXPORT Dataset : public std::enable_shared_from_this<Dataset> {

std::shared_ptr<Schema> schema_;
compute::Expression partition_expression_ = compute::literal(true);
bool should_cache_metadata_;

std::unique_ptr<DatasetEvolutionStrategy> evolution_strategy_ =
MakeBasicDatasetEvolutionStrategy();
};
Expand All @@ -427,7 +487,8 @@ class ARROW_DS_EXPORT InMemoryDataset : public Dataset {
/// Construct a dataset from a schema and a factory of record batch iterators.
InMemoryDataset(std::shared_ptr<Schema> schema,
std::shared_ptr<RecordBatchGenerator> get_batches)
: Dataset(std::move(schema)), get_batches_(std::move(get_batches)) {}
: Dataset(std::move(schema), /*should_cache_metadata=*/false),
get_batches_(std::move(get_batches)) {}

/// Convenience constructor taking a fixed list of batches
InMemoryDataset(std::shared_ptr<Schema> schema, RecordBatchVector batches);
Expand Down
Loading