-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
18 changed files
with
4,784 additions
and
710 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
import os | ||
import numpy as np | ||
from PIL import Image | ||
from sklearn import preprocessing | ||
|
||
from singa import device | ||
from singa import tensor | ||
from singa import autograd | ||
from singa import sonnx | ||
import onnx | ||
from utils import download_model, update_batch_size, check_exist_or_download | ||
|
||
import logging | ||
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') | ||
|
||
def preprocess(img): | ||
w, h = img.size | ||
img = img.crop((0, (h - w) // 2, w, h - (h - w) // 2)) | ||
img = img.resize((112, 112)) | ||
img = np.array(img).astype(np.float32) | ||
img = np.rollaxis(img, 2, 0) | ||
img = np.expand_dims(img, axis=0) | ||
return img | ||
|
||
|
||
def get_image(): | ||
# download image | ||
img1 = Image.open( | ||
check_exist_or_download( | ||
'https://angus-doc.readthedocs.io/en/latest/_images/aurelien.jpg')) | ||
img2 = Image.open( | ||
check_exist_or_download( | ||
'https://angus-doc.readthedocs.io/en/latest/_images/gwenn.jpg')) | ||
return img1, img2 | ||
|
||
|
||
class Infer: | ||
|
||
def __init__(self, sg_ir): | ||
self.sg_ir = sg_ir | ||
for idx, tens in sg_ir.tensor_map.items(): | ||
# allow the tensors to be updated | ||
tens.requires_grad = True | ||
tens.stores_grad = True | ||
sg_ir.tensor_map[idx] = tens | ||
|
||
def forward(self, x): | ||
return sg_ir.run([x])[0] | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
download_dir = '/tmp' | ||
url = 'https://s3.amazonaws.com/onnx-model-zoo/arcface/resnet100/resnet100.tar.gz' | ||
model_path = os.path.join(download_dir, 'resnet100', 'resnet100.onnx') | ||
|
||
logging.info("onnx load model...") | ||
download_model(url) | ||
onnx_model = onnx.load(model_path) | ||
|
||
# set batch size | ||
onnx_model = update_batch_size(onnx_model, 2) | ||
|
||
# prepare the model | ||
logging.info("prepare model...") | ||
dev = device.create_cuda_gpu() | ||
sg_ir = sonnx.prepare(onnx_model, device=dev) | ||
autograd.training = False | ||
model = Infer(sg_ir) | ||
|
||
# verifty the test dataset | ||
# from utils import load_dataset | ||
# inputs, ref_outputs = load_dataset( | ||
# os.path.join('/tmp', 'resnet100', 'test_data_set_0')) | ||
# x_batch = tensor.Tensor(device=dev, data=inputs[0]) | ||
# outputs = model.forward(x_batch) | ||
# for ref_o, o in zip(ref_outputs, outputs): | ||
# np.testing.assert_almost_equal(ref_o, tensor.to_numpy(o), 4) | ||
|
||
# inference demo | ||
logging.info("preprocessing...") | ||
img1, img2 = get_image() | ||
img1 = preprocess(img1) | ||
img2 = preprocess(img2) | ||
|
||
x_batch = tensor.Tensor(device=dev, | ||
data=np.concatenate((img1, img2), axis=0)) | ||
logging.info("model running...") | ||
y = model.forward(x_batch) | ||
|
||
logging.info("postprocessing...") | ||
embedding = tensor.to_numpy(y) | ||
embedding = preprocessing.normalize(embedding) | ||
embedding1 = embedding[0] | ||
embedding2 = embedding[1] | ||
|
||
# Compute squared distance between embeddings | ||
dist = np.sum(np.square(embedding1 - embedding2)) | ||
# Compute cosine similarity between embedddings | ||
sim = np.dot(embedding1, embedding2.T) | ||
# logging.info predictions | ||
logging.info('Distance = %f' % (dist)) | ||
logging.info('Similarity = %f' % (sim)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under th | ||
|
||
import os | ||
import zipfile | ||
import numpy as np | ||
import json | ||
|
||
from singa import device | ||
from singa import tensor | ||
from singa import sonnx | ||
from singa import autograd | ||
import onnx | ||
import tokenization | ||
from run_onnx_squad import read_squad_examples, convert_examples_to_features, RawResult, write_predictions | ||
|
||
import sys | ||
sys.path.append(os.path.dirname(__file__) + '/..') | ||
from utils import download_model, update_batch_size, check_exist_or_download | ||
|
||
import logging | ||
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(message)s') | ||
|
||
max_answer_length = 30 | ||
max_seq_length = 256 | ||
doc_stride = 128 | ||
max_query_length = 64 | ||
n_best_size = 20 | ||
batch_size = 1 | ||
|
||
|
||
def load_vocab(): | ||
url = 'https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip' | ||
download_dir = '/tmp/' | ||
filename = os.path.join(download_dir, 'uncased_L-12_H-768_A-12', '.', | ||
'vocab.txt') | ||
with zipfile.ZipFile(check_exist_or_download(url), 'r') as z: | ||
z.extractall(path=download_dir) | ||
return filename | ||
|
||
|
||
class Infer: | ||
|
||
def __init__(self, sg_ir): | ||
self.sg_ir = sg_ir | ||
|
||
def forward(self, x): | ||
return sg_ir.run(x) | ||
|
||
|
||
def preprocess(): | ||
vocab_file = load_vocab() | ||
tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, | ||
do_lower_case=True) | ||
predict_file = os.path.join(os.path.dirname(__file__), 'inputs.json') | ||
# print content | ||
with open(predict_file) as json_file: | ||
test_data = json.load(json_file) | ||
print("The input is:", json.dumps(test_data, indent=2)) | ||
|
||
eval_examples = read_squad_examples(input_file=predict_file) | ||
|
||
# Use convert_examples_to_features method from run_onnx_squad to get parameters from the input | ||
input_ids, input_mask, segment_ids, extra_data = convert_examples_to_features( | ||
eval_examples, tokenizer, max_seq_length, doc_stride, max_query_length) | ||
return input_ids, input_mask, segment_ids, extra_data, eval_examples | ||
|
||
|
||
def postprocess(eval_examples, extra_data, all_results): | ||
output_dir = 'predictions' | ||
os.makedirs(output_dir, exist_ok=True) | ||
output_prediction_file = os.path.join(output_dir, "predictions.json") | ||
output_nbest_file = os.path.join(output_dir, "nbest_predictions.json") | ||
write_predictions(eval_examples, extra_data, all_results, n_best_size, | ||
max_answer_length, True, output_prediction_file, | ||
output_nbest_file) | ||
|
||
# print results | ||
with open(output_prediction_file) as json_file: | ||
test_data = json.load(json_file) | ||
print("The result is:", json.dumps(test_data, indent=2)) | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
url = 'https://media.githubusercontent.com/media/onnx/models/master/text/machine_comprehension/bert-squad/model/bertsquad-10.tar.gz' | ||
download_dir = '/tmp/' | ||
model_path = os.path.join(download_dir, 'download_sample_10', | ||
'bertsquad10.onnx') | ||
|
||
logging.info("onnx load model...") | ||
download_model(url) | ||
onnx_model = onnx.load(model_path) | ||
|
||
# set batch size | ||
onnx_model = update_batch_size(onnx_model, batch_size) | ||
dev = device.create_cuda_gpu() | ||
autograd.training = False | ||
|
||
# inference | ||
logging.info("preprocessing...") | ||
input_ids, input_mask, segment_ids, extra_data, eval_examples = preprocess() | ||
|
||
sg_ir = None | ||
n = len(input_ids) | ||
bs = batch_size | ||
all_results = [] | ||
|
||
tmp_dict = {} | ||
for idx in range(0, n): | ||
logging.info("starting infer sample {}...".format(idx)) | ||
item = eval_examples[idx] | ||
inputs = [ | ||
np.array([item.qas_id], dtype=np.int32), | ||
segment_ids[idx:idx + bs].astype(np.int32), | ||
input_mask[idx:idx + bs].astype(np.int32), | ||
input_ids[idx:idx + bs].astype(np.int32), | ||
] | ||
|
||
if sg_ir is None: | ||
# prepare the model | ||
logging.info("model is none, prepare model...") | ||
sg_ir = sonnx.prepare(onnx_model, | ||
device=dev, | ||
init_inputs=inputs, | ||
keep_initializers_as_inputs=False) | ||
model = Infer(sg_ir) | ||
|
||
x_batch = [] | ||
for inp in inputs: | ||
tmp_tensor = tensor.from_numpy(inp) | ||
tmp_tensor.to_device(dev) | ||
x_batch.append(tmp_tensor) | ||
|
||
logging.info("model running for sample {}...".format(idx)) | ||
outputs = model.forward(x_batch) | ||
|
||
logging.info("hanlde the result of sample {}...".format(idx)) | ||
result = [] | ||
for outp in outputs: | ||
result.append(tensor.to_numpy(outp)) | ||
|
||
in_batch = result[1].shape[0] | ||
start_logits = [float(x) for x in result[1][0].flat] | ||
end_logits = [float(x) for x in result[0][0].flat] | ||
for i in range(0, in_batch): | ||
unique_id = len(all_results) | ||
all_results.append( | ||
RawResult(unique_id=unique_id, | ||
start_logits=start_logits, | ||
end_logits=end_logits)) | ||
# postprocessing | ||
logging.info("postprocessing...") | ||
postprocess(eval_examples, extra_data, all_results) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
{ | ||
"version": "1.4", | ||
"data": [ | ||
{ | ||
"paragraphs": [ | ||
{ | ||
"context": "In its early years, the new convention center failed to meet attendance and revenue expectations.[12] By 2002, many Silicon Valley businesses were choosing the much larger Moscone Center in San Francisco over the San Jose Convention Center due to the latter's limited space. A ballot measure to finance an expansion via a hotel tax failed to reach the required two-thirds majority to pass. In June 2005, Team San Jose built the South Hall, a $6.77 million, blue and white tent, adding 80,000 square feet (7,400 m2) of exhibit space", | ||
"qas": [ | ||
{ | ||
"question": "where is the businesses choosing to go?", | ||
"id": "1" | ||
}, | ||
{ | ||
"question": "how may votes did the ballot measure need?", | ||
"id": "2" | ||
}, | ||
{ | ||
"question": "By what year many Silicon Valley businesses were choosing the Moscone Center?", | ||
"id": "3" | ||
} | ||
] | ||
} | ||
], | ||
"title": "Conference Center" | ||
} | ||
] | ||
} |
Oops, something went wrong.