-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreach_env.py
150 lines (125 loc) · 5.42 KB
/
reach_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
from gym import utils
from gym.envs.robotics import hand_env
from gym.envs.robotics.utils import robot_get_obs
from gym.envs.registration import register
register(
id='HandReach-v0',
entry_point='reach_env:HandReachEnv',
max_episode_steps=50
)
FINGERTIP_SITE_NAMES = [
'robot0:S_fftip',
'robot0:S_mftip',
'robot0:S_rftip',
'robot0:S_lftip',
'robot0:S_thtip',
]
DEFAULT_INITIAL_QPOS = {
'robot0:WRJ1': -0.16514339750464327,
'robot0:WRJ0': -0.31973286565062153,
'robot0:FFJ3': 0.14340512546557435,
'robot0:FFJ2': 0.32028208333591573,
'robot0:FFJ1': 0.7126053607727917,
'robot0:FFJ0': 0.6705281001412586,
'robot0:MFJ3': 0.000246444303701037,
'robot0:MFJ2': 0.3152655251085491,
'robot0:MFJ1': 0.7659800313729842,
'robot0:MFJ0': 0.7323156897425923,
'robot0:RFJ3': 0.00038520700007378114,
'robot0:RFJ2': 0.36743546201985233,
'robot0:RFJ1': 0.7119514095008576,
'robot0:RFJ0': 0.6699446327514138,
'robot0:LFJ4': 0.0525442258033891,
'robot0:LFJ3': -0.13615534724474673,
'robot0:LFJ2': 0.39872030433433003,
'robot0:LFJ1': 0.7415570009679252,
'robot0:LFJ0': 0.704096378652974,
'robot0:THJ4': 0.003673823825070126,
'robot0:THJ3': 0.5506291436028695,
'robot0:THJ2': -0.014515151997119306,
'robot0:THJ1': -0.0015229223564485414,
'robot0:THJ0': -0.7894883021600622,
}
def goal_distance(goal_a, goal_b):
assert goal_a.shape == goal_b.shape
return np.linalg.norm(goal_a - goal_b, axis=-1)
class HandReachEnv(hand_env.HandEnv, utils.EzPickle):
def __init__(
self, distance_threshold=0.01, n_substeps=20, relative_control=False,
initial_qpos=DEFAULT_INITIAL_QPOS, reward_type='sparse',
):
self.distance_threshold = distance_threshold
self.reward_type = reward_type
hand_env.HandEnv.__init__(
self, 'hand/reach.xml', n_substeps=n_substeps, initial_qpos=initial_qpos,
relative_control=relative_control)
utils.EzPickle.__init__(self)
def _get_achieved_goal(self):
goal = [self.sim.data.get_site_xpos(name) for name in FINGERTIP_SITE_NAMES]
return np.array(goal).flatten()
# GoalEnv methods
# ----------------------------
def compute_reward(self, achieved_goal, goal, info):
d = goal_distance(achieved_goal, goal)
if self.reward_type == 'sparse':
return -(d > self.distance_threshold).astype(np.float32)
else:
return -d
# RobotEnv methods
# ----------------------------
def _env_setup(self, initial_qpos):
for name, value in initial_qpos.items():
self.sim.data.set_joint_qpos(name, value)
self.sim.forward()
self.initial_goal = self._get_achieved_goal().copy()
self.palm_xpos = self.sim.data.body_xpos[self.sim.model.body_name2id('robot0:palm')].copy()
def _get_obs(self):
robot_qpos, robot_qvel = robot_get_obs(self.sim)
achieved_goal = self._get_achieved_goal().ravel()
observation = np.concatenate([robot_qpos, robot_qvel, achieved_goal])
return {
'observation': observation.copy(),
'achieved_goal': achieved_goal.copy(),
'desired_goal': self.goal.copy(),
}
def _sample_goal(self):
thumb_name = 'robot0:S_thtip'
finger_names = [name for name in FINGERTIP_SITE_NAMES if name != thumb_name]
finger_name = self.np_random.choice(finger_names)
thumb_idx = FINGERTIP_SITE_NAMES.index(thumb_name)
finger_idx = FINGERTIP_SITE_NAMES.index(finger_name)
assert thumb_idx != finger_idx
# Pick a meeting point above the hand.
meeting_pos = self.palm_xpos + np.array([0.0, -0.09, 0.05])
meeting_pos += self.np_random.normal(scale=0.005, size=meeting_pos.shape)
# Slightly move meeting goal towards the respective finger to avoid that they
# overlap.
goal = self.initial_goal.copy().reshape(-1, 3)
for idx in [thumb_idx, finger_idx]:
offset_direction = (meeting_pos - goal[idx])
offset_direction /= np.linalg.norm(offset_direction)
goal[idx] = meeting_pos - 0.005 * offset_direction
if self.np_random.uniform() < 0.1:
# With some probability, ask all fingers to move back to the origin.
# This avoids that the thumb constantly stays near the goal position already.
goal = self.initial_goal.copy()
return goal.flatten()
def _is_success(self, achieved_goal, desired_goal):
d = goal_distance(achieved_goal, desired_goal)
return (d < self.distance_threshold).astype(np.float32)
def _render_callback(self):
# Visualize targets.
sites_offset = (self.sim.data.site_xpos - self.sim.model.site_pos).copy()
goal = self.goal.reshape(5, 3)
for finger_idx in range(5):
site_name = 'target{}'.format(finger_idx)
site_id = self.sim.model.site_name2id(site_name)
self.sim.model.site_pos[site_id] = goal[finger_idx] - sites_offset[site_id]
# Visualize finger positions.
achieved_goal = self._get_achieved_goal().reshape(5, 3)
for finger_idx in range(5):
site_name = 'finger{}'.format(finger_idx)
site_id = self.sim.model.site_name2id(site_name)
self.sim.model.site_pos[site_id] = achieved_goal[finger_idx] - sites_offset[site_id]
self.sim.forward()