-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrobot_env.py
189 lines (156 loc) · 6.4 KB
/
robot_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import copy
from typing import Optional
import numpy as np
import robot_utils
import gym
from gym import error, spaces
from gym.utils import seeding
#from gym_robotics import GoalEnv
try:
import mujoco_py
except ImportError as e:
raise error.DependencyNotInstalled(
"{}. (HINT: you need to install mujoco_py, and also perform the setup instructions here: https://github.com/openai/mujoco-py/.)".format(
e
)
)
DEFAULT_SIZE = 500
class RobotEnv(gym.GoalEnv):
def __init__(self, model_path, initial_qpos, n_actions, n_substeps):
if model_path.startswith("/"):
fullpath = model_path
else:
fullpath = os.path.join(os.path.dirname(__file__), "assets", model_path)
if not os.path.exists(fullpath):
raise OSError(f"File {fullpath} does not exist")
self.seed()
self.model = mujoco_py.load_model_from_path(fullpath)
self.sim = mujoco_py.MjSim(self.model, nsubsteps=n_substeps)
self.viewer = None
self.increment = 0
self._viewers = {}
self.metadata = {
"render.modes": ["human", "rgb_array"],
"video.frames_per_second": int(np.round(1.0 / self.dt)),
}
self._env_setup(initial_qpos=initial_qpos)
self.initial_state = copy.deepcopy(self.sim.get_state())
self.init_qpos = self.sim.data.qpos.ravel().copy()
self.init_qvel = self.sim.data.qvel.ravel().copy()
self.goal = np.zeros(0)
obs = self._get_obs()
self.action_space = spaces.Box(-1.0, 1.0, shape=(4,), dtype="float32")
self.observation_space = spaces.Dict(
dict(
desired_goal=spaces.Box(
-np.inf, np.inf, shape=obs["achieved_goal"].shape, dtype="float32"
),
achieved_goal=spaces.Box(
-np.inf, np.inf, shape=obs["achieved_goal"].shape, dtype="float32"
),
observation=spaces.Box(
-np.inf, np.inf, shape=obs["observation"].shape, dtype="float32"
),
)
)
@property
def dt(self):
return self.sim.model.opt.timestep * self.sim.nsubsteps
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
# Env methods
# ----------------------------
def step(self, action):
if np.array(action).shape != self.action_space.shape:
raise ValueError("Action dimension mismatch")
action = np.clip(action, self.action_space.low, self.action_space.high)
self._set_action(action)
self.sim.step()
self._step_callback()
obs = self._get_obs()
done = False
info = {
"is_success": self._is_success(obs["achieved_goal"], self.goal),
}
reward = self.compute_reward(obs["achieved_goal"], self.goal, info)
return obs, reward, done, info
def reset(self, seed: Optional[int] = None):
# Attempt to reset the simulator. Since we randomize initial conditions, it
# is possible to get into a state with numerical issues (e.g. due to penetration or
# Gimbel lock) or we may not achieve an initial condition (e.g. an object is within the hand).
# In this case, we just keep randomizing until we eventually achieve a valid initial
# configuration.
did_reset_sim = False
while not did_reset_sim:
did_reset_sim = self._reset_sim()
self.goal = self._sample_goal().copy()
obs = self._get_obs()
return obs
def close(self):
if self.viewer is not None:
# self.viewer.finish()
self.viewer = None
self._viewers = {}
def render(self, mode="human", width=DEFAULT_SIZE, height=DEFAULT_SIZE):
#self._render_callback()
if mode == "rgb_array":
self._get_viewer(mode).render(width, height)
# window size used for old mujoco-py:
data = self._get_viewer(mode).read_pixels(width, height, depth=False)
# original image is upside-down, so flip it
return data[::-1, :, :]
elif mode == "human":
self._get_viewer(mode).render()
def _get_viewer(self, mode):
self.viewer = self._viewers.get(mode)
if self.viewer is None:
if mode == "human":
self.viewer = mujoco_py.MjViewer(self.sim)
elif mode == "rgb_array":
self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, device_id=-1)
self._viewer_setup()
self._viewers[mode] = self.viewer
return self.viewer
# Extension methods
# ----------------------------
def _reset_sim(self):
"""Resets a simulation and indicates whether or not it was successful.
If a reset was unsuccessful (e.g. if a randomized state caused an error in the
simulation), this method should indicate such a failure by returning False.
In such a case, this method will be called again to attempt a the reset again.
"""
raise NotImplementedError
def _get_obs(self):
"""Returns the observation."""
raise NotImplementedError()
def _set_action(self, action):
"""Applies the given action to the simulation."""
raise NotImplementedError()
def _is_success(self, achieved_goal, desired_goal):
"""Indicates whether or not the achieved goal successfully achieved the desired goal."""
raise NotImplementedError()
#def _sample_goal(self):
# """Samples a new goal and returns it."""
# raise NotImplementedError()
def _env_setup(self, initial_qpos):
"""Initial configuration of the environment. Can be used to configure initial state
and extract information from the simulation.
"""
pass
def _viewer_setup(self):
"""Initial configuration of the viewer. Can be used to set the camera position,
for example.
"""
pass
def _render_callback(self):
"""A custom callback that is called before rendering. Can be used
to implement custom visualizations.
"""
pass
def _step_callback(self):
"""A custom callback that is called after stepping the simulation. Can be used
to enforce additional constraints on the simulation state.
"""
pass