-
Notifications
You must be signed in to change notification settings - Fork 82
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
40 changed files
with
1,809 additions
and
1,641 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
0.3.4 | ||
0.3.5 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
117 changes: 117 additions & 0 deletions
117
clinica/pipelines/deeplearning_prepare_data/deeplearning_prepare_data_cli.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
# coding: utf8 | ||
|
||
|
||
import clinica.engine as ce | ||
from colorama import Fore | ||
|
||
class DeepLearningPrepareDataCLI(ce.CmdParser): | ||
|
||
def define_name(self): | ||
"""Define the sub-command name to run this pipeline.""" | ||
self._name = 'deeplearning-prepare-data' | ||
|
||
def define_description(self): | ||
"""Define a description of this pipeline.""" | ||
self._description = ('Prepare data generated Clinica for PyTorch with Tensor extraction:\n' | ||
'http://clinica.run/doc/Pipelines/DeepLearning_PrepareData/') | ||
|
||
def define_options(self): | ||
"""Define the sub-command arguments.""" | ||
from clinica.engine.cmdparser import PIPELINE_CATEGORIES | ||
|
||
# Clinica compulsory arguments (e.g. BIDS, CAPS, group_id...) | ||
# Most of the time, you will want to read your pipeline inputs into | ||
# a BIDS and/or CAPS directory. If your pipeline does not require BIDS input, | ||
# simply remove the two lines involving the BIDS directory. | ||
clinica_comp = self._args.add_argument_group(PIPELINE_CATEGORIES['CLINICA_COMPULSORY']) | ||
clinica_comp.add_argument("caps_directory", | ||
help='Path to the CAPS directory.') | ||
clinica_comp.add_argument("extract_method", | ||
help='''Format of the extracted features. Three options: | ||
'image' to convert to PyTorch tensor the complete 3D image, | ||
'patch' to extract 3D volumetric patches and | ||
'slice' to extract 2D slices from the image. | ||
By default the features are extracted from the cropped image.''', | ||
choices=['image', 'slice', 'patch'], default='image' | ||
) | ||
|
||
optional = self._args.add_argument_group(PIPELINE_CATEGORIES['OPTIONAL']) | ||
optional.add_argument('-uui', '--use_uncropped_image', | ||
help='''Use the uncropped image instead of the | ||
cropped image generated by t1-linear.''', | ||
default=False, action="store_true" | ||
) | ||
|
||
optional_patch = self._args.add_argument_group( | ||
"%sPipeline options if you chose ‘patch’ extraction%s" % (Fore.BLUE, Fore.RESET) | ||
) | ||
optional_patch.add_argument( | ||
'-ps', '--patch_size', | ||
help='''Patch size (default: --patch_size 50).''', | ||
type=int, default=50 | ||
) | ||
optional_patch.add_argument( | ||
'-ss', '--stride_size', | ||
help='''Stride size (default: --stride_size 50).''', | ||
type=int, default=50 | ||
) | ||
|
||
optional_slice = self._args.add_argument_group( | ||
"%sPipeline options if you chose ‘slice’ extraction%s" % (Fore.BLUE, Fore.RESET) | ||
) | ||
optional_slice.add_argument( | ||
'-sd', '--slice_direction', | ||
help='''Slice direction. Three options: | ||
'0' -> Sagittal plane, | ||
'1' -> Coronal plane or | ||
'2' -> Axial plane | ||
(default: sagittal plane i.e. --slice_direction 0)''', | ||
type=int, default=0 | ||
) | ||
optional_slice.add_argument( | ||
'-sm', '--slice_mode', | ||
help='''Slice mode. Two options: 'rgb' to save the slice in | ||
three identical channels, ‘single’ to save the slice in a | ||
single channel (default: --slice_mode rgb).''', | ||
choices=['rgb', 'single'], default='rgb' | ||
) | ||
|
||
# Clinica standard arguments (e.g. --n_procs) | ||
self.add_clinica_standard_arguments() | ||
|
||
def run_command(self, args): | ||
"""Run the pipeline with defined args.""" | ||
from networkx import Graph | ||
from .deeplearning_prepare_data_pipeline import DeepLearningPrepareData | ||
from clinica.utils.ux import print_end_pipeline, print_crash_files_and_exit | ||
|
||
parameters = { | ||
# Add your own pipeline parameters here to use them inside your | ||
# pipeline. See the file `deeplearning_prepare_data_pipeline.py` to | ||
# see an example of use. | ||
'extract_method': args.extract_method, | ||
'patch_size': args.patch_size, | ||
'stride_size': args.stride_size, | ||
'slice_direction': args.slice_direction, | ||
'slice_mode': args.slice_mode, | ||
'use_uncropped_image': args.use_uncropped_image, | ||
} | ||
|
||
pipeline = DeepLearningPrepareData( | ||
caps_directory=self.absolute_path(args.caps_directory), | ||
tsv_file=self.absolute_path(args.subjects_sessions_tsv), | ||
base_dir=self.absolute_path(args.working_directory), | ||
parameters=parameters, | ||
name=self.name | ||
) | ||
|
||
if args.n_procs: | ||
exec_pipeline = pipeline.run(plugin='MultiProc', | ||
plugin_args={'n_procs': args.n_procs}) | ||
else: | ||
exec_pipeline = pipeline.run() | ||
|
||
if isinstance(exec_pipeline, Graph): | ||
print_end_pipeline(self.name, pipeline.base_dir, pipeline.base_dir_was_specified) | ||
else: | ||
print_crash_files_and_exit(args.logname, pipeline.base_dir) |
Oops, something went wrong.