Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
arjunaj5 authored May 27, 2021
1 parent 663f082 commit 6249e77
Showing 1 changed file with 280 additions and 0 deletions.
280 changes: 280 additions & 0 deletions Untitled0.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,280 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Untitled0.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "n6dTOOdqwfEX",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "40a6b482-3df8-4c21-a145-41319c5ad611"
},
"source": [
"!pip install keras-tuner\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting keras-tuner\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/20/ec/1ef246787174b1e2bb591c95f29d3c1310070cad877824f907faba3dade9/keras-tuner-1.0.2.tar.gz (62kB)\n",
"\r\u001b[K |█████▏ | 10kB 14.9MB/s eta 0:00:01\r\u001b[K |██████████▍ | 20kB 14.0MB/s eta 0:00:01\r\u001b[K |███████████████▋ | 30kB 9.8MB/s eta 0:00:01\r\u001b[K |████████████████████▉ | 40kB 8.4MB/s eta 0:00:01\r\u001b[K |██████████████████████████ | 51kB 5.4MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▎| 61kB 5.9MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 71kB 4.2MB/s \n",
"\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from keras-tuner) (20.9)\n",
"Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from keras-tuner) (0.16.0)\n",
"Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from keras-tuner) (1.19.5)\n",
"Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from keras-tuner) (0.8.9)\n",
"Collecting terminaltables\n",
" Downloading https://files.pythonhosted.org/packages/9b/c4/4a21174f32f8a7e1104798c445dacdc1d4df86f2f26722767034e4de4bff/terminaltables-3.1.0.tar.gz\n",
"Collecting colorama\n",
" Downloading https://files.pythonhosted.org/packages/44/98/5b86278fbbf250d239ae0ecb724f8572af1c91f4a11edf4d36a206189440/colorama-0.4.4-py2.py3-none-any.whl\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from keras-tuner) (4.41.1)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from keras-tuner) (2.23.0)\n",
"Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from keras-tuner) (1.4.1)\n",
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from keras-tuner) (0.22.2.post1)\n",
"Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->keras-tuner) (2.4.7)\n",
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->keras-tuner) (2.10)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->keras-tuner) (3.0.4)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->keras-tuner) (1.24.3)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->keras-tuner) (2020.12.5)\n",
"Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->keras-tuner) (1.0.1)\n",
"Building wheels for collected packages: keras-tuner, terminaltables\n",
" Building wheel for keras-tuner (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for keras-tuner: filename=keras_tuner-1.0.2-cp37-none-any.whl size=78938 sha256=95a44373e2186ae4493fa9994be226432f2ebcb8fb4285a2f1a44da1bf8de9f7\n",
" Stored in directory: /root/.cache/pip/wheels/bb/a1/8a/7c3de0efb3707a1701b36ebbfdbc4e67aedf6d4943a1f463d6\n",
" Building wheel for terminaltables (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for terminaltables: filename=terminaltables-3.1.0-cp37-none-any.whl size=15356 sha256=467fd452ae8e548e4d91d768c5f1b93b7e69ef1f9ee57f3e7fc5be7ded1caafb\n",
" Stored in directory: /root/.cache/pip/wheels/30/6b/50/6c75775b681fb36cdfac7f19799888ef9d8813aff9e379663e\n",
"Successfully built keras-tuner terminaltables\n",
"Installing collected packages: terminaltables, colorama, keras-tuner\n",
"Successfully installed colorama-0.4.4 keras-tuner-1.0.2 terminaltables-3.1.0\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "d0Pfij4Kzc7y"
},
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"import numpy as np"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "4KwmQJxxz4Z4"
},
"source": [
"fashion_mnist=keras.datasets.fashion_mnist"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "2Yvoy-3E0OYM"
},
"source": [
"(train_images,train_labels),(test_images,test_lables)=fashion_mnist.load_data()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "QVkZaCzf0kYf"
},
"source": [
"train_images=train_images/255.0\n",
"test_images=test_images/255.0"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "V8XQqaSJ1dct",
"outputId": "c51f8425-1094-4b7e-9173-181cbf596c49"
},
"source": [
"train_images[0].shape"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(28, 28)"
]
},
"metadata": {
"tags": []
},
"execution_count": 41
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "cxIViZ4-11ZK"
},
"source": [
"train_images=train_images.reshape(len(train_images),28,28,1)\n",
"test_images=test_images.reshape(len(test_images),28,28,1)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "tK5cHhr82RNR"
},
"source": [
"def build_model(hp):\n",
" model=keras.Sequential([\n",
" keras.layers.Conv2D(\n",
" filters=hp.Int('conv_1_filter',min_value=32, max_value=128,step=16),\n",
" kernel_size=hp.Choice('conv_1_kernel',values=[3,5]),\n",
" activation='relu',\n",
" input_shape=(28,28,1)\n",
" \n",
" ),\n",
" keras.layers.Conv2D(\n",
" filters=hp.Int('conv_2_filter',min_value=32, max_value=64,step=16),\n",
" kernel_size=hp.Choice('conv_2_kernel',values=[3,5]),\n",
" activation='relu'\n",
" ),\n",
" keras.layers.Flatten(),\n",
" keras.layers.Dense(\n",
" units=hp.Int('dense_1_units',min_value=32, max_value=128,step=16),\n",
" activation='relu'\n",
" ),\n",
" keras.layers.Dense(10,activation='softmax')\n",
" ])\n",
" model.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate',values=[1e-2,1e-3])),\n",
" loss='sparse_categorical_crossentropy',\n",
" metrics=['accuracy'])\n",
" return model"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "vUxboH8V8TKu"
},
"source": [
"from kerastuner import RandomSearch\n",
"from kerastuner.engine.hyperparameters import HyperParameters"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "dzhb_IkH9Kbl"
},
"source": [
"tuner_search=RandomSearch(build_model,objective='val_accuracy',max_trials=5,directory='output',project_name=\"Mnist Fashion\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "qKH_cDV7-0Bl"
},
"source": [
"tuner_search.search(train_images,train_labels,epochs=3,validation_split=0.1)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "NPHGmFnNAhey"
},
"source": [
"model=tuner_search.get_best_models(num_models=1)[0]"
],
"execution_count": 57,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "FO_tFSXQC9Ti",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "6fc24271-ed44-4b72-902a-aac438092ed7"
},
"source": [
"model.summary()"
],
"execution_count": 58,
"outputs": [
{
"output_type": "stream",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"conv2d (Conv2D) (None, 24, 24, 96) 2496 \n",
"_________________________________________________________________\n",
"conv2d_1 (Conv2D) (None, 22, 22, 48) 41520 \n",
"_________________________________________________________________\n",
"flatten (Flatten) (None, 23232) 0 \n",
"_________________________________________________________________\n",
"dense (Dense) (None, 80) 1858640 \n",
"_________________________________________________________________\n",
"dense_1 (Dense) (None, 10) 810 \n",
"=================================================================\n",
"Total params: 1,903,466\n",
"Trainable params: 1,903,466\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
],
"name": "stdout"
}
]
}
]
}

0 comments on commit 6249e77

Please sign in to comment.