Point Cloud Integrated-Gradients Optimized Saliency, a visualization technique that can automatically find the minimal saliency map that covers the most important features on a shape.
Ziwen Chen, Wenxuan Wu, Zhongang Qi
"Visualizing point cloud classifiers by curvature smoothing", in BMVC2020.
- Download and unzip the modelnet40_normal_resampled dataset to a
data
folder. - Create an empty checkpoint log folder for the classifier
mkdir log
.
- For training a PointConv point cloud classifier, run
python3 train_pointconv.py
. - If the training flattened, stop the process and tune down the
lr
hyperparam.
- Run
python3 modelnetdataset.py
. It will run thesave_all_blurs()
method defined there.
- Run
python3 pc_IGOS.py
. The main code for PC-IGOS isintegrate_mask()
. - If you want to save point clouds along the del/ins curves, create a folder
mkdir tensors
and togglevisualize
to be true inevaluate_on_all_classes()
.
blur_utils.py : utils for smoothing curvatures on point clouds
modelnetdataset.py : PyTorch datasets for ModelNet40
pc_IGOS.py : main PC-IGOS code and evaluation code
pointconv.py : architecture of a PointConv classifier
pointconv_utils.py : utils for point cloud classifers
train_pointconv.py : training code for the PointConv classifier