-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Release Version 1.0 nanoGPT Transformer Implementation
Project Los Angeles Tegridy Code 2023
- Loading branch information
Alex
authored
Sep 22, 2023
1 parent
788d18b
commit 7482cef
Showing
1 changed file
with
396 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,396 @@ | ||
#=============================================================================== | ||
# | ||
# nanoGPT Transformer Module | ||
# | ||
# Version 1.0 | ||
# | ||
# Original source code courtesy of Andrej karpathy | ||
# https://github.com/karpathy/nanoGPT/ | ||
# | ||
# Module contains nanoGPT code with useful modifications | ||
# Original source code retrieved on 09/21/2023 | ||
# | ||
# Project Los Angeles | ||
# Tegridy Code 2023 | ||
# | ||
#=============================================================================== | ||
|
||
#=============================================================================== | ||
# Critical dependencies | ||
# | ||
# !pip install torch >= 2.0.1 | ||
# | ||
#=============================================================================== | ||
|
||
|
||
#=============================================================================== | ||
|
||
|
||
""" | ||
Full definition of a GPT Language Model, all of it in this single file. | ||
References: | ||
1) the official GPT-2 TensorFlow implementation released by OpenAI: | ||
https://github.com/openai/gpt-2/blob/master/src/model.py | ||
2) huggingface/transformers PyTorch implementation: | ||
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py | ||
""" | ||
|
||
import math | ||
import inspect | ||
from dataclasses import dataclass | ||
|
||
import torch | ||
import torch.nn as nn | ||
from torch.nn import functional as F | ||
|
||
class LayerNorm(nn.Module): | ||
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """ | ||
|
||
def __init__(self, ndim, bias): | ||
super().__init__() | ||
self.weight = nn.Parameter(torch.ones(ndim)) | ||
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | ||
|
||
def forward(self, input): | ||
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) | ||
|
||
class CausalSelfAttention(nn.Module): | ||
|
||
def __init__(self, config): | ||
super().__init__() | ||
assert config.n_embd % config.n_head == 0 | ||
# key, query, value projections for all heads, but in a batch | ||
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | ||
# output projection | ||
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | ||
# regularization | ||
self.attn_dropout = nn.Dropout(config.dropout) | ||
self.resid_dropout = nn.Dropout(config.dropout) | ||
self.n_head = config.n_head | ||
self.n_embd = config.n_embd | ||
self.dropout = config.dropout | ||
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0 | ||
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') | ||
if not self.flash: | ||
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") | ||
# causal mask to ensure that attention is only applied to the left in the input sequence | ||
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) | ||
.view(1, 1, config.block_size, config.block_size)) | ||
|
||
def forward(self, x): | ||
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | ||
|
||
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | ||
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | ||
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | ||
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | ||
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | ||
|
||
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | ||
if self.flash: | ||
# efficient attention using Flash Attention CUDA kernels | ||
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True) | ||
else: | ||
# manual implementation of attention | ||
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | ||
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) | ||
att = F.softmax(att, dim=-1) | ||
att = self.attn_dropout(att) | ||
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | ||
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | ||
|
||
# output projection | ||
y = self.resid_dropout(self.c_proj(y)) | ||
return y | ||
|
||
class MLP(nn.Module): | ||
|
||
def __init__(self, config): | ||
super().__init__() | ||
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | ||
self.gelu = nn.GELU() | ||
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | ||
self.dropout = nn.Dropout(config.dropout) | ||
|
||
def forward(self, x): | ||
x = self.c_fc(x) | ||
x = self.gelu(x) | ||
x = self.c_proj(x) | ||
x = self.dropout(x) | ||
return x | ||
|
||
class Block(nn.Module): | ||
|
||
def __init__(self, config): | ||
super().__init__() | ||
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) | ||
self.attn = CausalSelfAttention(config) | ||
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) | ||
self.mlp = MLP(config) | ||
|
||
def forward(self, x): | ||
x = x + self.attn(self.ln_1(x)) | ||
x = x + self.mlp(self.ln_2(x)) | ||
return x | ||
|
||
@dataclass | ||
class GPTConfig: | ||
block_size: int = 1024 | ||
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency | ||
n_layer: int = 12 | ||
n_head: int = 12 | ||
n_embd: int = 768 | ||
dropout: float = 0.0 | ||
ignore_idx: int = -1 | ||
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster | ||
|
||
class GPT(nn.Module): | ||
|
||
def __init__(self, config): | ||
super().__init__() | ||
assert config.vocab_size is not None | ||
assert config.block_size is not None | ||
self.config = config | ||
|
||
self.transformer = nn.ModuleDict(dict( | ||
wte = nn.Embedding(config.vocab_size, config.n_embd), | ||
wpe = nn.Embedding(config.block_size, config.n_embd), | ||
drop = nn.Dropout(config.dropout), | ||
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | ||
ln_f = LayerNorm(config.n_embd, bias=config.bias), | ||
)) | ||
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | ||
# with weight tying when using torch.compile() some warnings get generated: | ||
# "UserWarning: functional_call was passed multiple values for tied weights. | ||
# This behavior is deprecated and will be an error in future versions" | ||
# not 100% sure what this is, so far seems to be harmless. TODO investigate | ||
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying | ||
|
||
# init all weights | ||
self.apply(self._init_weights) | ||
# apply special scaled init to the residual projections, per GPT-2 paper | ||
for pn, p in self.named_parameters(): | ||
if pn.endswith('c_proj.weight'): | ||
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) | ||
|
||
# report number of parameters | ||
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) | ||
|
||
def get_num_params(self, non_embedding=True): | ||
""" | ||
Return the number of parameters in the model. | ||
For non-embedding count (default), the position embeddings get subtracted. | ||
The token embeddings would too, except due to the parameter sharing these | ||
params are actually used as weights in the final layer, so we include them. | ||
""" | ||
n_params = sum(p.numel() for p in self.parameters()) | ||
if non_embedding: | ||
n_params -= self.transformer.wpe.weight.numel() | ||
return n_params | ||
|
||
def _init_weights(self, module): | ||
if isinstance(module, nn.Linear): | ||
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | ||
if module.bias is not None: | ||
torch.nn.init.zeros_(module.bias) | ||
elif isinstance(module, nn.Embedding): | ||
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | ||
|
||
def compute_accuracy(self, logits, labels): | ||
out = torch.argmax(logits, dim=-1) | ||
out = out.flatten() | ||
labels = labels.flatten() | ||
|
||
mask = (labels != self.config.ignore_idx) # can also be self.pad_value (your choice) | ||
out = out[mask] | ||
labels = labels[mask] | ||
|
||
num_right = (out == labels) | ||
num_right = torch.sum(num_right).type(torch.float32) | ||
|
||
acc = num_right / len(labels) | ||
|
||
return acc | ||
|
||
def forward(self, idx, targets=None): | ||
device = idx.device | ||
b, t = idx.size() | ||
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | ||
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t) | ||
|
||
# forward the GPT model itself | ||
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) | ||
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd) | ||
x = self.transformer.drop(tok_emb + pos_emb) | ||
for block in self.transformer.h: | ||
x = block(x) | ||
x = self.transformer.ln_f(x) | ||
|
||
if targets is not None: | ||
# if we are given some desired targets also calculate the loss | ||
logits = self.lm_head(x) | ||
acc = self.compute_accuracy(logits, targets) | ||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=self.config.ignore_idx) | ||
else: | ||
# inference-time mini-optimization: only forward the lm_head on the very last position | ||
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim | ||
acc = self.compute_accuracy(logits, targets) | ||
loss = None | ||
|
||
return logits, loss, acc | ||
|
||
def crop_block_size(self, block_size): | ||
# model surgery to decrease the block size if necessary | ||
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024) | ||
# but want to use a smaller block size for some smaller, simpler model | ||
assert block_size <= self.config.block_size | ||
self.config.block_size = block_size | ||
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) | ||
for block in self.transformer.h: | ||
if hasattr(block.attn, 'bias'): | ||
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] | ||
|
||
@classmethod | ||
def from_pretrained(cls, model_type, override_args=None): | ||
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} | ||
override_args = override_args or {} # default to empty dict | ||
# only dropout can be overridden see more notes below | ||
assert all(k == 'dropout' for k in override_args) | ||
from transformers import GPT2LMHeadModel | ||
print("loading weights from pretrained gpt: %s" % model_type) | ||
|
||
# n_layer, n_head and n_embd are determined from model_type | ||
config_args = { | ||
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params | ||
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params | ||
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params | ||
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params | ||
}[model_type] | ||
print("forcing vocab_size=50257, block_size=1024, bias=True") | ||
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints | ||
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints | ||
config_args['bias'] = True # always True for GPT model checkpoints | ||
# we can override the dropout rate, if desired | ||
if 'dropout' in override_args: | ||
print(f"overriding dropout rate to {override_args['dropout']}") | ||
config_args['dropout'] = override_args['dropout'] | ||
# create a from-scratch initialized minGPT model | ||
config = GPTConfig(**config_args) | ||
model = GPT(config) | ||
sd = model.state_dict() | ||
sd_keys = sd.keys() | ||
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param | ||
|
||
# init a huggingface/transformers model | ||
model_hf = GPT2LMHeadModel.from_pretrained(model_type) | ||
sd_hf = model_hf.state_dict() | ||
|
||
# copy while ensuring all of the parameters are aligned and match in names and shapes | ||
sd_keys_hf = sd_hf.keys() | ||
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer | ||
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) | ||
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] | ||
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear | ||
# this means that we have to transpose these weights when we import them | ||
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" | ||
for k in sd_keys_hf: | ||
if any(k.endswith(w) for w in transposed): | ||
# special treatment for the Conv1D weights we need to transpose | ||
assert sd_hf[k].shape[::-1] == sd[k].shape | ||
with torch.no_grad(): | ||
sd[k].copy_(sd_hf[k].t()) | ||
else: | ||
# vanilla copy over the other parameters | ||
assert sd_hf[k].shape == sd[k].shape | ||
with torch.no_grad(): | ||
sd[k].copy_(sd_hf[k]) | ||
|
||
return model | ||
|
||
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): | ||
# start with all of the candidate parameters | ||
param_dict = {pn: p for pn, p in self.named_parameters()} | ||
# filter out those that do not require grad | ||
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} | ||
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. | ||
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. | ||
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] | ||
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] | ||
optim_groups = [ | ||
{'params': decay_params, 'weight_decay': weight_decay}, | ||
{'params': nodecay_params, 'weight_decay': 0.0} | ||
] | ||
num_decay_params = sum(p.numel() for p in decay_params) | ||
num_nodecay_params = sum(p.numel() for p in nodecay_params) | ||
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") | ||
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") | ||
# Create AdamW optimizer and use the fused version if it is available | ||
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters | ||
use_fused = fused_available and device_type == 'cuda' | ||
extra_args = dict(fused=True) if use_fused else dict() | ||
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) | ||
print(f"using fused AdamW: {use_fused}") | ||
|
||
return optimizer | ||
|
||
def estimate_mfu(self, fwdbwd_per_iter, dt): | ||
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ | ||
# first estimate the number of flops we do per iteration. | ||
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311 | ||
N = self.get_num_params() | ||
cfg = self.config | ||
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size | ||
flops_per_token = 6*N + 12*L*H*Q*T | ||
flops_per_fwdbwd = flops_per_token * T | ||
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter | ||
# express our flops throughput as ratio of A100 bfloat16 peak flops | ||
flops_achieved = flops_per_iter * (1.0/dt) # per second | ||
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS | ||
mfu = flops_achieved / flops_promised | ||
return mfu | ||
|
||
@torch.no_grad() | ||
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None, verbose=True): | ||
""" | ||
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete | ||
the sequence max_new_tokens times, feeding the predictions back into the model each time. | ||
Most likely you'll want to make sure to be in model.eval() mode of operation for this. | ||
""" | ||
|
||
if verbose: | ||
print("Generating sequence of max length:", max_new_tokens) | ||
|
||
b, t = idx.shape | ||
|
||
for s in range(max_new_tokens): | ||
|
||
if verbose: | ||
if s % 32 == 0: | ||
print(s, '/', max_new_tokens) | ||
|
||
# if the sequence context is growing too long we must crop it at block_size | ||
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] | ||
# forward the model to get the logits for the index in the sequence | ||
logits, _ = self(idx_cond) | ||
# pluck the logits at the final step and scale by desired temperature | ||
logits = logits[:, -1, :] / temperature | ||
# optionally crop the logits to only the top k options | ||
if top_k is not None: | ||
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | ||
logits[logits < v[:, [-1]]] = -float('Inf') | ||
# apply softmax to convert logits to (normalized) probabilities | ||
probs = F.softmax(logits, dim=-1) | ||
# sample from the distribution | ||
idx_next = torch.multinomial(probs, num_samples=1) | ||
# append sampled index to the running sequence and continue | ||
idx = torch.cat((idx, idx_next), dim=1) | ||
|
||
|
||
|
||
if return_prime: | ||
return idx[:, :] | ||
|
||
else: | ||
return idx[:, t:] | ||
|
||
# ============================================================================== |