Skip to content

Commit

Permalink
fix: removed erraneously comments out test code
Browse files Browse the repository at this point in the history
Signed-off-by: Sankalp Gilda <[email protected]>
  • Loading branch information
astrogilda authored Dec 24, 2023
1 parent f246bb1 commit 0a39c65
Showing 1 changed file with 148 additions and 147 deletions.
295 changes: 148 additions & 147 deletions tests/test_bootstrap.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@

# class TestWholeResidualBootstrap:
# class TestPassingCases:

# @settings(deadline=None, max_examples=10)
# @given(
# model_type=model_strategy_univariate,
Expand Down Expand Up @@ -403,162 +404,162 @@
# bootstrap._generate_samples_single_bootstrap(np.array(X))


# class TestWholeMarkovBootstrap:
# class TestPassingCases:
# @settings(deadline=None, max_examples=10)
# @given(
# model_type=model_strategy_univariate,
# order=integers(min_value=1, max_value=5),
# save_models=booleans(),
# n_bootstraps=integers(min_value=1, max_value=10),
# rng=one_of(integers(min_value=0, max_value=2**32 - 1), none()),
# apply_pca_flag=booleans(),
# blocks_as_hidden_states_flag=booleans(),
# method=markov_method_strategy,
# n_states=just(2),
# )
# def test_whole_markov_bootstrap(
# self,
# model_type: str,
# order: int,
# save_models: bool,
# n_bootstraps: int,
# rng: int,
# apply_pca_flag: bool,
# blocks_as_hidden_states_flag: bool,
# method: str,
# n_states: int,
# ) -> None:
# """
# Test if the WholeMarkovBootstrap class initializes correctly and if the _generate_samples_single_bootstrap method runs without errors.
# """
# X = np.random.rand(20, 1)
# config = BaseMarkovBootstrapConfig(
# model_type=model_type,
# order=order,
# save_models=save_models,
# n_bootstraps=n_bootstraps,
# rng=rng,
# apply_pca_flag=apply_pca_flag,
# blocks_as_hidden_states_flag=blocks_as_hidden_states_flag,
# method=method,
# n_states=n_states,
# )
# bootstrap = WholeMarkovBootstrap(config=config)
class TestWholeMarkovBootstrap:
class TestPassingCases:
@settings(deadline=None, max_examples=10)
@given(
model_type=model_strategy_univariate,
order=integers(min_value=1, max_value=5),
save_models=booleans(),
n_bootstraps=integers(min_value=1, max_value=10),
rng=one_of(integers(min_value=0, max_value=2**32 - 1), none()),
apply_pca_flag=booleans(),
blocks_as_hidden_states_flag=booleans(),
method=markov_method_strategy,
n_states=just(2),
)
def test_whole_markov_bootstrap(
self,
model_type: str,
order: int,
save_models: bool,
n_bootstraps: int,
rng: int,
apply_pca_flag: bool,
blocks_as_hidden_states_flag: bool,
method: str,
n_states: int,
) -> None:
"""
Test if the WholeMarkovBootstrap class initializes correctly and if the _generate_samples_single_bootstrap method runs without errors.
"""
X = np.random.rand(20, 1)
config = BaseMarkovBootstrapConfig(
model_type=model_type,
order=order,
save_models=save_models,
n_bootstraps=n_bootstraps,
rng=rng,
apply_pca_flag=apply_pca_flag,
blocks_as_hidden_states_flag=blocks_as_hidden_states_flag,
method=method,
n_states=n_states,
)
bootstrap = WholeMarkovBootstrap(config=config)

# assert bootstrap.config == config
assert bootstrap.config == config

# # Check that _generate_samples_single_bootstrap method runs without errors
# indices, data = bootstrap._generate_samples_single_bootstrap(
# np.array(X)
# )
# assert isinstance(indices, list)
# assert len(indices) == 1
# assert isinstance(indices[0], np.ndarray)
# assert len(indices[0]) == X.shape[0]
# Check that _generate_samples_single_bootstrap method runs without errors
indices, data = bootstrap._generate_samples_single_bootstrap(
np.array(X)
)
assert isinstance(indices, list)
assert len(indices) == 1
assert isinstance(indices[0], np.ndarray)
assert len(indices[0]) == X.shape[0]

# assert isinstance(data, list)
# assert len(data) == 1
# assert isinstance(data[0], np.ndarray)
# assert len(data[0]) == X.shape[0]
assert isinstance(data, list)
assert len(data) == 1
assert isinstance(data[0], np.ndarray)
assert len(data[0]) == X.shape[0]

# # Check that _generate_samples method runs without errors
# bootstrap = WholeMarkovBootstrap(config=config)
# indices_data_gen = bootstrap._generate_samples(
# np.array(X), return_indices=True
# )
# indices_data_gen_list = list(indices_data_gen)
# assert isinstance(indices_data_gen_list, list)
# assert len(indices_data_gen_list) == n_bootstraps
# # Unpack indices and data
# indices, data = zip(*indices_data_gen_list)
# assert isinstance(indices, tuple)
# assert len(indices) == n_bootstraps
# assert all(isinstance(i, list) for i in indices)
# assert all(np.prod(np.shape(i)) == X.shape[0] for i in indices)
# Check that _generate_samples method runs without errors
bootstrap = WholeMarkovBootstrap(config=config)
indices_data_gen = bootstrap._generate_samples(
np.array(X), return_indices=True
)
indices_data_gen_list = list(indices_data_gen)
assert isinstance(indices_data_gen_list, list)
assert len(indices_data_gen_list) == n_bootstraps
# Unpack indices and data
indices, data = zip(*indices_data_gen_list)
assert isinstance(indices, tuple)
assert len(indices) == n_bootstraps
assert all(isinstance(i, list) for i in indices)
assert all(np.prod(np.shape(i)) == X.shape[0] for i in indices)

# assert isinstance(data, tuple)
# assert len(data) == n_bootstraps
# assert all(isinstance(d, np.ndarray) for d in data)
# assert all(np.prod(np.shape(d)) == X.shape[0] for d in data)
assert isinstance(data, tuple)
assert len(data) == n_bootstraps
assert all(isinstance(d, np.ndarray) for d in data)
assert all(np.prod(np.shape(d)) == X.shape[0] for d in data)

# # Check that bootstrap.bootstrap method runs without errors
# bootstrap = WholeMarkovBootstrap(config=config)
# indices_data_gen = bootstrap.bootstrap(
# np.array(X), return_indices=True, test_ratio=0.2
# )
# indices_data_gen_list = list(indices_data_gen)
# assert isinstance(indices_data_gen_list, list)
# assert len(indices_data_gen_list) == n_bootstraps
# # Unpack indices and data
# indices, data = zip(*indices_data_gen_list)
# assert isinstance(indices, tuple)
# assert len(indices) == n_bootstraps
# assert all(isinstance(i, list) for i in indices)
# assert all(
# np.prod(np.shape(i)) == int(X.shape[0] * 0.8) for i in indices
# )
# Check that bootstrap.bootstrap method runs without errors
bootstrap = WholeMarkovBootstrap(config=config)
indices_data_gen = bootstrap.bootstrap(
np.array(X), return_indices=True, test_ratio=0.2
)
indices_data_gen_list = list(indices_data_gen)
assert isinstance(indices_data_gen_list, list)
assert len(indices_data_gen_list) == n_bootstraps
# Unpack indices and data
indices, data = zip(*indices_data_gen_list)
assert isinstance(indices, tuple)
assert len(indices) == n_bootstraps
assert all(isinstance(i, list) for i in indices)
assert all(
np.prod(np.shape(i)) == int(X.shape[0] * 0.8) for i in indices
)

# assert isinstance(data, tuple)
# assert len(data) == n_bootstraps
# assert all(isinstance(d, np.ndarray) for d in data)
# assert all(
# np.prod(np.shape(d)) == int(X.shape[0] * 0.8) for d in data
# )
assert isinstance(data, tuple)
assert len(data) == n_bootstraps
assert all(isinstance(d, np.ndarray) for d in data)
assert all(
np.prod(np.shape(d)) == int(X.shape[0] * 0.8) for d in data
)

# class TestFailingCases:
# @settings(deadline=None, max_examples=10)
# @given(
# model_type=model_strategy_univariate,
# order=integers(min_value=1, max_value=5),
# save_models=booleans(),
# params=dictionaries(
# keys=text(min_size=1, max_size=3),
# values=integers(min_value=1, max_value=10),
# ),
# n_bootstraps=integers(min_value=1, max_value=10),
# rng=one_of(integers(min_value=0, max_value=2**32 - 1), none()),
# apply_pca_flag=booleans(),
# blocks_as_hidden_states_flag=booleans(),
# method=markov_method_strategy,
# n_states=just(2),
# )
# def test_invalid_fit_model(
# self,
# model_type: str,
# order: int,
# save_models: bool,
# params: dict[str, int],
# n_bootstraps: int,
# rng: int,
# apply_pca_flag: bool,
# blocks_as_hidden_states_flag: bool,
# method: str,
# n_states: int,
# ) -> None:
# """
# Test if the WholeMarkovBootstrap's _generate_samples_single_bootstrap method raises a ValueError when the fit_model method fails.
# """
# X = np.random.rand(20, 1)
# config = BaseMarkovBootstrapConfig(
# model_type=model_type,
# order=order,
# save_models=save_models,
# model_params=params,
# n_bootstraps=n_bootstraps,
# rng=rng,
# apply_pca_flag=apply_pca_flag,
# blocks_as_hidden_states_flag=blocks_as_hidden_states_flag,
# method=method,
# n_states=n_states,
# )
# bootstrap = WholeMarkovBootstrap(config=config)
class TestFailingCases:
@settings(deadline=None, max_examples=10)
@given(
model_type=model_strategy_univariate,
order=integers(min_value=1, max_value=5),
save_models=booleans(),
params=dictionaries(
keys=text(min_size=1, max_size=3),
values=integers(min_value=1, max_value=10),
),
n_bootstraps=integers(min_value=1, max_value=10),
rng=one_of(integers(min_value=0, max_value=2**32 - 1), none()),
apply_pca_flag=booleans(),
blocks_as_hidden_states_flag=booleans(),
method=markov_method_strategy,
n_states=just(2),
)
def test_invalid_fit_model(
self,
model_type: str,
order: int,
save_models: bool,
params: dict[str, int],
n_bootstraps: int,
rng: int,
apply_pca_flag: bool,
blocks_as_hidden_states_flag: bool,
method: str,
n_states: int,
) -> None:
"""
Test if the WholeMarkovBootstrap's _generate_samples_single_bootstrap method raises a ValueError when the fit_model method fails.
"""
X = np.random.rand(20, 1)
config = BaseMarkovBootstrapConfig(
model_type=model_type,
order=order,
save_models=save_models,
model_params=params,
n_bootstraps=n_bootstraps,
rng=rng,
apply_pca_flag=apply_pca_flag,
blocks_as_hidden_states_flag=blocks_as_hidden_states_flag,
method=method,
n_states=n_states,
)
bootstrap = WholeMarkovBootstrap(config=config)

# # Check that _generate_samples_single_bootstrap method raises a ValueError when the fit_model method fails
# with patch.object(
# TSFitBestLag, "fit", side_effect=ValueError
# ), pytest.raises(ValueError):
# bootstrap._generate_samples_single_bootstrap(np.array(X))
# Check that _generate_samples_single_bootstrap method raises a ValueError when the fit_model method fails
with patch.object(
TSFitBestLag, "fit", side_effect=ValueError
), pytest.raises(ValueError):
bootstrap._generate_samples_single_bootstrap(np.array(X))


class TestBlockMarkovBootstrap:
Expand Down

0 comments on commit 0a39c65

Please sign in to comment.