Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Created a new unified flow module for RSS. #203

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 16 additions & 15 deletions autoplex/auto/phonons/flows.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,12 +183,12 @@ def make(
structure_list: list[Structure],
mp_ids,
split_ratio: float = 0.4,
f_max: float = 40.0,
force_max: float = 40.0,
pre_xyz_files: list[str] | None = None,
pre_database_dir: str | None = None,
preprocessing_data: bool = True,
apply_data_preprocessing: bool = True,
atomwise_regularization_parameter: float = 0.1,
f_min: float = 0.01, # unit: eV Å-1
force_min: float = 0.01, # unit: eV Å-1
atom_wise_regularization: bool = True,
auto_delta: bool = False,
dft_references: list[PhononBSDOSDoc] | None = None,
Expand All @@ -208,17 +208,17 @@ def make(
split_ratio: float.
Parameter to divide the training set and the test set.
A value of 0.1 means that the ratio of the training set to the test set is 9:1.
f_max: float
Maximally allowed force in the data set.
force_max: float
Maximum allowed force in the dataset.
pre_xyz_files: list[str] or None
names of the pre-database train xyz file and test xyz file.
pre_database_dir: str or None
the pre-database directory.
preprocessing_data: bool
preprocessing the data.
apply_data_preprocessing: bool
Apply data preprocessing.
atomwise_regularization_parameter: float
regularization value for the atom-wise force components.
f_min: float
force_min: float
minimal force cutoff value for atom-wise regularization.
atom_wise_regularization: bool
for including atom-wise regularization.
Expand Down Expand Up @@ -316,17 +316,17 @@ def make(
glue_file_path=self.glue_file_path,
).make(
species_list=isoatoms.output["species"],
isolated_atoms_energies=isoatoms.output["energies"],
isolated_atom_energies=isoatoms.output["energies"],
fit_input=fit_input,
split_ratio=split_ratio,
f_max=f_max,
force_max=force_max,
pre_xyz_files=pre_xyz_files,
pre_database_dir=pre_database_dir,
atomwise_regularization_parameter=atomwise_regularization_parameter,
f_min=f_min,
force_min=force_min,
atom_wise_regularization=atom_wise_regularization,
auto_delta=auto_delta,
preprocessing_data=preprocessing_data,
apply_data_preprocessing=apply_data_preprocessing,
**fit_kwargs,
)
flows.append(add_data_fit)
Expand Down Expand Up @@ -390,16 +390,17 @@ def make(
glue_file_path=self.glue_file_path,
).make(
species_list=isoatoms.output["species"],
isolated_atoms_energies=isoatoms.output["energies"],
isolated_atom_energies=isoatoms.output["energies"],
fit_input=fit_input,
split_ratio=split_ratio,
f_max=f_max,
force_max=force_max,
pre_xyz_files=pre_xyz_files,
pre_database_dir=pre_database_dir,
atomwise_regularization_parameter=atomwise_reg_parameter,
f_min=f_min,
force_min=force_min,
atom_wise_regularization=atom_wise_regularization,
auto_delta=auto_delta,
apply_data_preprocessing=apply_data_preprocessing,
soap=soap_dict,
)
flows.append(loop_data_fit)
Expand Down
Loading
Loading