Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: port autoware_interpolation from autoware.universe #149

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions common/autoware_interpolation/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
cmake_minimum_required(VERSION 3.14)
project(autoware_interpolation)

find_package(autoware_cmake REQUIRED)
autoware_package()

ament_auto_add_library(autoware_interpolation SHARED
src/linear_interpolation.cpp
src/spline_interpolation.cpp
src/spline_interpolation_points_2d.cpp
src/spherical_linear_interpolation.cpp
)

if(BUILD_TESTING)
file(GLOB_RECURSE test_files test/**/*.cpp)

ament_add_ros_isolated_gtest(test_interpolation ${test_files})

target_link_libraries(test_interpolation
autoware_interpolation
)
endif()

ament_auto_package()
109 changes: 109 additions & 0 deletions common/autoware_interpolation/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
# Interpolation package

This package supplies linear and spline interpolation functions.

## Linear Interpolation

`lerp(src_val, dst_val, ratio)` (for scalar interpolation) interpolates `src_val` and `dst_val` with `ratio`.
This will be replaced with `std::lerp(src_val, dst_val, ratio)` in `C++20`.

`lerp(base_keys, base_values, query_keys)` (for vector interpolation) applies linear regression to each two continuous points whose x values are`base_keys` and whose y values are `base_values`.
Then it calculates interpolated values on y-axis for `query_keys` on x-axis.

## Spline Interpolation

`spline(base_keys, base_values, query_keys)` (for vector interpolation) applies spline regression to each two continuous points whose x values are`base_keys` and whose y values are `base_values`.
Then it calculates interpolated values on y-axis for `query_keys` on x-axis.

### Evaluation of calculation cost

We evaluated calculation cost of spline interpolation for 100 points, and adopted the best one which is tridiagonal matrix algorithm.
Methods except for tridiagonal matrix algorithm exists in `spline_interpolation` package, which has been removed from Autoware.

| Method | Calculation time |
| --------------------------------- | ---------------- |
| Tridiagonal Matrix Algorithm | 0.007 [ms] |
| Preconditioned Conjugate Gradient | 0.024 [ms] |
| Successive Over-Relaxation | 0.074 [ms] |

### Spline Interpolation Algorithm

Assuming that the size of `base_keys` ($x_i$) and `base_values` ($y_i$) are $N + 1$, we aim to calculate spline interpolation with the following equation to interpolate between $y_i$ and $y_{i+1}$.

$$
Y_i(x) = a_i (x - x_i)^3 + b_i (x - x_i)^2 + c_i (x - x_i) + d_i \ \ \ (i = 0, \dots, N-1)
$$

Constraints on spline interpolation are as follows.
The number of constraints is $4N$, which is equal to the number of variables of spline interpolation.

$$
\begin{align}
Y_i (x_i) & = y_i \ \ \ (i = 0, \dots, N-1) \\
Y_i (x_{i+1}) & = y_{i+1} \ \ \ (i = 0, \dots, N-1) \\
Y_i '(x_{i+1}) & = Y_{i+1}' (x_{i+1}) \ \ \ (i = 0, \dots, N-2) \\
Y_i (x_{i+1})'' & = Y_{i+1}'' (x_{i+1}) \ \ \ (i = 0, \dots, N-2) \\
Y_0 ''(x_0) & = 0 \\
Y_{N-1}'' (x_N) & = 0
\end{align}
$$

According to [this article](https://www.mk-mode.com/rails/docs/INTERPOLATION_SPLINE.pdf), spline interpolation is formulated as the following linear equation.

$$
\begin{align}
\begin{pmatrix}
2(h_0 + h_1) & h_1 \\
h_0 & 2 (h_1 + h_2) & h_2 & & O \\
& & & \ddots \\
O & & & & h_{N-2} & 2 (h_{N-2} + h_{N-1})
\end{pmatrix}
\begin{pmatrix}
v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{N-1}
\end{pmatrix}=
\begin{pmatrix}
w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_{N-1}
\end{pmatrix}
\end{align}
$$

where

$$
\begin{align}
h_i & = x_{i+1} - x_i \ \ \ (i = 0, \dots, N-1) \\
w_i & = 6 \left(\frac{y_{i+1} - y_{i+1}}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}}\right) \ \ \ (i = 1, \dots, N-1)
\end{align}
$$

The coefficient matrix of this linear equation is tridiagonal matrix. Therefore, it can be solve with tridiagonal matrix algorithm, which can solve linear equations without gradient descent methods.

Solving this linear equation with tridiagonal matrix algorithm, we can calculate coefficients of spline interpolation as follows.

$$
\begin{align}
a_i & = \frac{v_{i+1} - v_i}{6 (x_{i+1} - x_i)} \ \ \ (i = 0, \dots, N-1) \\
b_i & = \frac{v_i}{2} \ \ \ (i = 0, \dots, N-1) \\
c_i & = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} - \frac{1}{6}(x_{i+1} - x_i)(2 v_i + v_{i+1}) \ \ \ (i = 0, \dots, N-1) \\
d_i & = y_i \ \ \ (i = 0, \dots, N-1)
\end{align}
$$

### Tridiagonal Matrix Algorithm

We solve tridiagonal linear equation according to [this article](https://www.iist.ac.in/sites/default/files/people/tdma.pdf) where variables of linear equation are expressed as follows in the implementation.

$$
\begin{align}
\begin{pmatrix}
b_0 & c_0 & & \\
a_0 & b_1 & c_2 & O \\
& & \ddots \\
O & & a_{N-2} & b_{N-1}
\end{pmatrix}
x =
\begin{pmatrix}
d_0 \\ d_2 \\ d_3 \\ \vdots \\ d_{N-1}
\end{pmatrix}
\end{align}
$$
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
// Copyright 2021 Tier IV, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef AUTOWARE__INTERPOLATION__INTERPOLATION_UTILS_HPP_
#define AUTOWARE__INTERPOLATION__INTERPOLATION_UTILS_HPP_

#include <algorithm>
#include <array>
#include <stdexcept>
#include <vector>

namespace autoware::interpolation
{
inline bool isIncreasing(const std::vector<double> & x)
{
if (x.empty()) {
throw std::invalid_argument("Points is empty.");
}

for (size_t i = 0; i < x.size() - 1; ++i) {
if (x.at(i) >= x.at(i + 1)) {
return false;
}
}

return true;
}

inline bool isNotDecreasing(const std::vector<double> & x)
{
if (x.empty()) {
throw std::invalid_argument("Points is empty.");
}

for (size_t i = 0; i < x.size() - 1; ++i) {
if (x.at(i) > x.at(i + 1)) {
return false;
}
}

return true;
}

inline std::vector<double> validateKeys(
const std::vector<double> & base_keys, const std::vector<double> & query_keys)
{
// when vectors are empty
if (base_keys.empty() || query_keys.empty()) {
throw std::invalid_argument("Points is empty.");
}

// when size of vectors are less than 2
if (base_keys.size() < 2) {
throw std::invalid_argument(
"The size of points is less than 2. base_keys.size() = " + std::to_string(base_keys.size()));
}

// when indices are not sorted
if (!isIncreasing(base_keys) || !isNotDecreasing(query_keys)) {
throw std::invalid_argument("Either base_keys or query_keys is not sorted.");
}

// when query_keys is out of base_keys (This function does not allow exterior division.)
constexpr double epsilon = 1e-3;
if (
query_keys.front() < base_keys.front() - epsilon ||
base_keys.back() + epsilon < query_keys.back()) {
throw std::invalid_argument("query_keys is out of base_keys");
}

// NOTE: Due to calculation error of double, a query key may be slightly out of base keys.
// Therefore, query keys are cropped here.
auto validated_query_keys = query_keys;
validated_query_keys.front() = std::max(validated_query_keys.front(), base_keys.front());
validated_query_keys.back() = std::min(validated_query_keys.back(), base_keys.back());

return validated_query_keys;
}

template <class T>
void validateKeysAndValues(
const std::vector<double> & base_keys, const std::vector<T> & base_values)
{
// when vectors are empty
if (base_keys.empty() || base_values.empty()) {
throw std::invalid_argument("Points is empty.");
}

// when size of vectors are less than 2
if (base_keys.size() < 2 || base_values.size() < 2) {
throw std::invalid_argument(
"The size of points is less than 2. base_keys.size() = " + std::to_string(base_keys.size()) +
", base_values.size() = " + std::to_string(base_values.size()));
}

// when sizes of indices and values are not same
if (base_keys.size() != base_values.size()) {
throw std::invalid_argument("The size of base_keys and base_values are not the same.");
}
}
} // namespace autoware::interpolation

#endif // AUTOWARE__INTERPOLATION__INTERPOLATION_UTILS_HPP_
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
// Copyright 2021 Tier IV, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef AUTOWARE__INTERPOLATION__LINEAR_INTERPOLATION_HPP_
#define AUTOWARE__INTERPOLATION__LINEAR_INTERPOLATION_HPP_

#include "autoware/interpolation/interpolation_utils.hpp"

#include <vector>

namespace autoware::interpolation
{
double lerp(const double src_val, const double dst_val, const double ratio);

std::vector<double> lerp(
const std::vector<double> & base_keys, const std::vector<double> & base_values,
const std::vector<double> & query_keys);

double lerp(
const std::vector<double> & base_keys, const std::vector<double> & base_values,
const double query_key);
} // namespace autoware::interpolation

#endif // AUTOWARE__INTERPOLATION__LINEAR_INTERPOLATION_HPP_
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
// Copyright 2022 Tier IV, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef AUTOWARE__INTERPOLATION__SPHERICAL_LINEAR_INTERPOLATION_HPP_
#define AUTOWARE__INTERPOLATION__SPHERICAL_LINEAR_INTERPOLATION_HPP_

#include "autoware/interpolation/interpolation_utils.hpp"

#include <geometry_msgs/msg/quaternion.hpp>

#include <tf2/utils.h>

#ifdef ROS_DISTRO_GALACTIC
#include <tf2_geometry_msgs/tf2_geometry_msgs.h>
#else
#include <tf2_geometry_msgs/tf2_geometry_msgs.hpp>
#endif

#include <vector>

namespace autoware::interpolation
{
geometry_msgs::msg::Quaternion slerp(
const geometry_msgs::msg::Quaternion & src_quat, const geometry_msgs::msg::Quaternion & dst_quat,
const double ratio);

std::vector<geometry_msgs::msg::Quaternion> slerp(
const std::vector<double> & base_keys,
const std::vector<geometry_msgs::msg::Quaternion> & base_values,
const std::vector<double> & query_keys);

geometry_msgs::msg::Quaternion lerpOrientation(
const geometry_msgs::msg::Quaternion & o_from, const geometry_msgs::msg::Quaternion & o_to,
const double ratio);
} // namespace autoware::interpolation

#endif // AUTOWARE__INTERPOLATION__SPHERICAL_LINEAR_INTERPOLATION_HPP_
Loading
Loading