Skip to content

Commit

Permalink
Add a new perception_reproducer.
Browse files Browse the repository at this point in the history
  • Loading branch information
xtk8532704 committed Jun 7, 2024
1 parent 532b2d5 commit 2246da7
Show file tree
Hide file tree
Showing 2 changed files with 244 additions and 0 deletions.
1 change: 1 addition & 0 deletions planning/planning_debug_tools/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@ install(PROGRAMS
scripts/trajectory_visualizer.py
scripts/closest_velocity_checker.py
scripts/perception_replayer/perception_reproducer.py
scripts/perception_replayer/perception_reproducer_v2.py
scripts/perception_replayer/perception_replayer.py
scripts/update_logger_level.sh
DESTINATION lib/${PROJECT_NAME}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
#!/usr/bin/env python3

# Copyright 2023 TIER IV, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import pickle
from collections import deque

import numpy as np
from perception_replayer_common import PerceptionReplayerCommon
import rclpy
from utils import StopWatch
from utils import create_empty_pointcloud
from utils import translate_objects_coordinate

dist_eps = 1e-2 # (meters)

class PerceptionReproducerV2(PerceptionReplayerCommon):
'''
PerceptionReproducerV2 is used reproduces perception topic data from rosbag, specifically optimized for use with simulators.
'''
def __init__(self, args):
self.rosbag_ego_odom_seach_radius = args.seach_radius # (m) the range of the ego odom to search,

Check warning on line 35 in planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer_v2.py

View workflow job for this annotation

GitHub Actions / spell-check-partial

Unknown word (seach)

Check warning on line 35 in planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer_v2.py

View workflow job for this annotation

GitHub Actions / spell-check-partial

Unknown word (seach)
self.reproduce_cooldown = args.reproduce_cooldown # (sec) the cooldown time for republishing published data, please make sure that it's greater than the ego's stopping time.

Check warning on line 36 in planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer_v2.py

View workflow job for this annotation

GitHub Actions / spell-check-partial

Unknown word (cooldown)

super().__init__(args, "perception_reproducer_v2")

self.reproduce_sequence_indices = deque()# contains ego_odom_idx
self.cooldown_indices = deque() # contains ego_odom_idx
self.ego_odom_id2last_published_timestamp=dict() # for checking last published timestap.

self.prev_ego_pos = None
self.prev_ego_odom_msg = None
self.perv_objects_msg = None
self.prev_traffic_signals_msg = None


self.stopwatch = StopWatch(self.args.verbose) # for debug

# to make some data to accelerate computation
self.preprocess_data()

# start main timer callback
time_diffs = []
prev_stamp = self.rosbag_ego_odom_data[0][0]
for stamp, _ in self.rosbag_ego_odom_data[1:]:
time_diff = (stamp - prev_stamp)/ 1e9
time_diffs.append(time_diff)
prev_stamp = stamp

average_ego_odom_interval = sum(time_diffs) / len(time_diffs)
self.timer = self.create_timer(average_ego_odom_interval, self.on_timer)

# kill perception process to avoid a conflict of the perception topics
self.timer_check_perception_process = self.create_timer(3.0, self.on_timer_kill_perception)

print("Start timer callback")

def preprocess_data(self):
# closest search with numpy data is much faster than usual
self.rosbag_ego_odom_data_numpy = np.array(
[
[data[1].pose.pose.position.x, data[1].pose.pose.position.y]
for data in self.rosbag_ego_odom_data
]
)

def on_timer_kill_perception(self):
self.kill_online_perception_node()

def on_timer(self):
if self.args.verbose:
print("\n-- on_timer start --")
self.stopwatch.tic("total on_timer")

timestamp = self.get_clock().now()
timestamp_msg = timestamp.to_msg()

if self.args.detected_object:
pointcloud_msg = create_empty_pointcloud(timestamp_msg)
self.pointcloud_pub.publish(pointcloud_msg)

if not self.ego_pose:
print("No ego pose found.")
return

## Update reproduce list if ego_pos is moved.
if self.ego_pose is None \
or self.prev_ego_pos is None or \
((self.ego_pose.position.x - self.prev_ego_pos.position.x)**2 + \
(self.ego_pose.position.y - self.prev_ego_pos.position.y)**2) > dist_eps**2:

# find the nearest ego odom by simulation observation
self.stopwatch.tic("find_nearest_ego_odom_by_observation")
nearst_ego_odom_ind = self.find_nearest_ego_odom_index(self.ego_pose)
nearst_ego_odom_pos = self.rosbag_ego_odom_data[nearst_ego_odom_ind][1].pose.pose
self.stopwatch.toc("find_nearest_ego_odom_by_observation")

# find a list of ego odoms around the nearst_ego_odom_pos.
self.stopwatch.tic("find_nearby_ego_odom_indies")
ego_odom_indices = self.find_nearby_ego_odom_indies(nearst_ego_odom_pos,
self.rosbag_ego_odom_seach_radius)
self.stopwatch.toc("find_nearby_ego_odom_indies")

# update reproduce_sequence with those data not in cooldown list.
while self.cooldown_indices:
last_timestamp = self.ego_odom_id2last_published_timestamp[self.cooldown_indices[0]]
if (timestamp - last_timestamp).nanoseconds/1e9 > self.reproduce_cooldown:
self.cooldown_indices.popleft()
else:
break


self.stopwatch.tic("update reproduce_sequence")
self.reproduce_sequence_indices = deque(
[idx for idx in ego_odom_indices
if idx not in self.cooldown_indices])
self.stopwatch.toc("update reproduce_sequence")

self.prev_ego_pos = self.ego_pose

## get data to publish
repeat_trigger = len(self.reproduce_sequence_indices) == 0
if not repeat_trigger:# pop data from reproduce_sequence if sequence is not empty.
ego_odom_idx = self.reproduce_sequence_indices.popleft()
pose_timestamp, ego_odom_msg = self.rosbag_ego_odom_data[ego_odom_idx]
# extract message by the nearest ego odom timestamp
self.stopwatch.tic("find_topics_by_timestamp")
objects_msg, traffic_signals_msg = self.find_topics_by_timestamp(pose_timestamp)
self.stopwatch.toc("find_topics_by_timestamp")

else:#get perv data to publish if reproduce_sequence is empty.
ego_odom_msg = self.prev_ego_odom_msg
objects_msg = self.perv_objects_msg
traffic_signals_msg = self.prev_traffic_signals_msg

## transform and publish current data.
self.stopwatch.tic("transform and publish")

# ego odom
self.recorded_ego_pub.publish(ego_odom_msg)

# objects
if objects_msg:
objects_msg.header.stamp = timestamp_msg
if self.args.detected_object:
# copy the messages
self.stopwatch.tic("message deepcopy")
objects_msg_copied = pickle.loads(pickle.dumps(objects_msg)) # this is x5 faster than deepcopy
self.stopwatch.toc("message deepcopy")

log_ego_pose = ego_odom_msg.pose.pose
translate_objects_coordinate(self.ego_pose, log_ego_pose, objects_msg_copied)
else:
objects_msg_copied = objects_msg
self.objects_pub.publish(objects_msg_copied)


# traffic signals
if traffic_signals_msg:
traffic_signals_msg.stamp = timestamp_msg
self.traffic_signals_pub.publish(traffic_signals_msg)
self.prev_traffic_signals_msg = traffic_signals_msg
elif self.prev_traffic_signals_msg:
self.prev_traffic_signals_msg.stamp = timestamp_msg
self.traffic_signals_pub.publish(self.prev_traffic_signals_msg)
self.stopwatch.toc("transform and publish")

if not repeat_trigger:
# save data for repeate pubulication.
self.prev_ego_odom_msg = ego_odom_msg
self.perv_objects_msg = objects_msg if objects_msg is not None else self.perv_objects_msg
self.prev_traffic_signals_msg = traffic_signals_msg if traffic_signals_msg is not None else self.prev_traffic_signals_msg

# update cooldown info.
self.ego_odom_id2last_published_timestamp[ego_odom_idx] = timestamp
self.cooldown_indices.append(ego_odom_idx)

self.stopwatch.toc("total on_timer")

def find_nearest_ego_odom_index(self, ego_pose):
# nearest search with numpy format is much (~ x100) faster than regular for loop
self_pose = np.array([ego_pose.position.x, ego_pose.position.y])
dists_squared = np.sum((self.rosbag_ego_odom_data_numpy - self_pose) ** 2, axis=1)
nearest_idx = np.argmin(dists_squared)
return nearest_idx

def find_nearby_ego_odom_indies(self, ego_pose, search_radius: float):
'''
Find the indices of the ego odoms that are within a certain distance of the ego_pose.
Inputs:
ego_pose: the ego pose to search around.
search_radius: the radius to search around the ego_pose.'''
self_pose = np.array([ego_pose.position.x, ego_pose.position.y])
dists_squared = np.sum((self.rosbag_ego_odom_data_numpy - self_pose) ** 2, axis=1)
nearby_indices = np.where(dists_squared <= search_radius**2)[0]

return nearby_indices
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-b", "--bag", help="rosbag", default=None)
parser.add_argument(
"-d", "--detected-object", help="publish detected object", action="store_true"
)
parser.add_argument(
"-t", "--tracked-object", help="publish tracked object", action="store_true"
)
parser.add_argument(
"-f", "--rosbag-format", help="rosbag data format (default is db3)", default="db3"
)
parser.add_argument(
"-v", "--verbose", help="output debug data", action="store_true", default=False
)
parser.add_argument(
"-r", "--seach-radius", help="the search radius for searching rosbag's ego odom messages around the nearest ego odom pose (default is 1 meters)", type=float, default=1.0
)
parser.add_argument(
"-c", "--reproduce-cooldown", help="The cooldown time for republishing published messages (default is 40.0 seconds)", type=float, default=40.0
)
args = parser.parse_args()

rclpy.init()
node = PerceptionReproducerV2(args)

try:
rclpy.spin(node)
except KeyboardInterrupt:
pass
finally:
node.destroy_node()
rclpy.shutdown()

0 comments on commit 2246da7

Please sign in to comment.