Skip to content

Modular cross-platform firmware for digital or mixed analog/digital game controllers

License

Notifications You must be signed in to change notification settings

avahe-kellenberger/HayBox

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HayBox

HayBox is a modular, cross-platform firmware for digital or mixed analog/digital controllers, primarily targeted at B0XX-style controllers.

GitHub issues GitHub pull requests

Table of Contents

Features

Features include:

  • Cross platform support:
    • RP2040 (e.g. Raspberry Pi Pico)
    • 16MHz AVR MCUs (e.g. ATMega32U4 which several Arduinos are based on)
  • Supports many existing controllers/PCBs, e.g. B0XX, LBX, Smash Box, Crane's GCCPCB/Model S
  • Supports a variety of communication backends which can be used either separately or in conjunction with each other:
    • XInput
    • DInput
    • GameCube console
    • Nintendo 64 console
    • Nintendo Switch console
    • B0XX input viewer
  • Supports a variety of "input sources" which can be used in conjunction to create mixed input controllers:
    • Buttons/switches wired directly to GPIO pins
    • Switch matrix (as typically found in keyboards)
    • Wii Nunchuk
    • GameCube controller
  • Melee mode up to date with B0XX V3 specifications
  • Existing modes for popular games (e.g. Melee, Project M, Ultimate, Rivals of Aether, traditional fighting games)
  • Easy to create new controller modes (or keyboard modes) for different games
  • USB keyboard game modes for games that lack gamepad support
  • Fully customisable SOCD cleaning, allowing you to configure SOCD button pairs (e.g. left/right, up/down) for each controller/keyboard mode, and also easily change the SOCD resolution method for each SOCD pair
  • Switch modes on the fly without unplugging your controller
  • Automatically detects whether plugged into console or USB
  • Game modes and communication backends are independent entities, meaning you can use any game mode with any supported console without extra work
  • Easily switch between different GameCube/N64 polling rates in order to have optimal latency on console, overclocked adapter, etc. (not necessary for Pico/RP2040)

Installation

If you want to simply use a pre-built firmware with default pin mappings and configuration, refer to the pre-built binaries section. If you want to make any changes to the code, refer to the building from source section.

Pre-built binaries

  1. Browse the existing configs to determine which config is appropriate for your hardware
  2. Download the corresponding artifact from either the latest HayBox release, or from a workflow run if you want the latest development version (unstable).
  3. Flash the firmware to your microcontroller in the usual way
    • If you are using a Pico/RP2040 build (.uf2 file), simply put it into bootsel mode while plugging it into your PC, and drag and drop the .uf2 file onto the RPI-RP2 drive that comes up
    • If you are using Arduino/AVR build (.hex file), you can use a program like QMK Toolbox to flash the .hex file to it

Building from source

There are currently three main ways to build HayBox:

  • Locally using PlatformIO IDE for VSCode or PlatformIO CLI
  • In the cloud using GitHub Codespaces
  • In the cloud using GitHub Actions

Both GitHub Actions and GitHub Codespaces require you to create a GitHub account, but do not require you to install any dependencies on your local machine.

Building locally

The following dependencies are required when building locally:

After installing all of the requirements, download and extract the latest HayBox release, or clone the repository if you have git installed (which makes it easier for you to pull updates).

After that:

  1. Open Visual Studio Code
  2. If on Windows and it's your first time building HayBox, run the command git config --global core.longpaths true in any terminal (within VS Code or regular cmd/PowerShell are all fine)
  3. Click File -> Open Folder and choose the HayBox folder (the one containing platformio.ini, not the folder above that)
  4. Choose the appropriate build environment for your controller's PCB by clicking the environment selection button near the bottom left of the window

image image

  1. If your controller has a different pinout than any of the existing configs, you may edit the button mappings and other pins at the top of the config (config/<environment>/config.cpp). Any buttons that your controller doesn't have can simply be deleted from the list.
  2. If you see a message in the bottom bar saying "Rebuilding IntelliSense Index" or "Loading Project Tasks", wait for it to disappear. For Pico especially it may take quite a while the first time because it has to download 2-3GB of dependencies.
  3. Click Build (in the bottom left) and make sure everything compiles without errors
  4. This next step differs depending on the microcontroller used in your controller.
    • For Pico-based controllers: hold the bootsel button while plugging it in (or your Start button if you already have HayBox installed) and then drag and drop the file HayBox/.pio/build/<environment>/firmware.uf2 onto the RPI-RP2 drive that comes up.
    • For Arduino-based controllers: Plug in your controller via USB and click Upload (next to the Build button)

Building using GitHub Codespaces

This is probably the most convenient way to modify and rebuild HayBox, but bear in mind that GitHub's free tier places some limitations on how much you can use Codespaces each month. Because of this, you will want to make sure you shut down your Codespaces when you aren't using them, in order to maximise what you can get from your quota.

First, create a GitHub account or just log in if you already have one, then fork this repository and open your fork in a new Codespace by clicking the green Code button -> Codespaces -> Create codespace on master. This should open VS Code in your browser with all of the necessary extensions and dependencies pre-installed. From here, the process is much the same as building locally, except you can't use the Upload button to flash the firmware. You will instead have to download the compiled binary from HayBox/.pio/build/<environment>/ and flash it manually (see here for more on that).

Building using GitHub Actions

This repository contains a GitHub Actions workflow definition that builds each PlatformIO environment specified in the matrix on every push, and uploads firmware binaries as artifacts which you can download by clicking a specific workflow run from the history. You can create a fork of this repository and enable Actions by clicking Settings -> Actions -> General -> Select "Allow all actions and reusable workflows" -> Save.

The fastest way to make changes if you only want to build via GitHub Actions is to use github.dev. You can do so by simply pressing . on your keyboard while you have your fork of this repository open, and it will open a VS Code editor in your browser. This does not give you the same development capabilities that you'd get in a Codespace, but it does allow you to make changes and commit them directly from your browser. Change whatever you'd like, then use the Source Control tab on the left to add, commit, and push your changes. Finally, go back to the repository and click on the Actions tab, click on your workflow run, and wait for it to build the artifact.

If you are adding a new device config/PlatformIO environment, you will have to add the environment to the matrix in order for it to be built by the GitHub Actions workflow. You can also remove any environments from the matrix that you don't care about in order to reduce resource usage and potentially speed up your builds.

Usage

Default button holds

Pico bootsel mode

To reboot Pico-based controllers into bootsel mode, hold Start on plugin.

Brook board passthrough mode

To switch to Brook board mode on GCCPCB2, GCCMX, B0XX R2, or LBX, hold B on plugin.

Communication backends (console selection)

Communication backends are selected slightly differently depending on the type of microcontroller used in the controller.

On Pico/RP2040, USB vs GameCube vs Nintendo 64 is detected automatically. If not plugged into a console, the default is XInput, which should work plug-and-play with most PC games. Other backends are selected by holding one of the following buttons on plugin:

  • X - Nintendo Switch USB mode (also sets initial game mode to Ultimate mode)
  • Z - DInput mode (only recommended for games which don't support XInput)

On Arduino/AVR, the DInput backend is selected if a USB connection is detected. Otherwise, it defaults to GameCube backend, unless another backend is manually selected by holding one of the following buttons on plugin:

  • A - GameCube backend with polling rate fix disabled (used for GCC adapters)
  • C-Left - Nintendo 64 backend (60Hz polling rate)

Game mode selection

Unlike other similar firmwares, HayBox by default allows you to switch modes on the fly without unplugging your controller. This is mainly useful on PC, as opposed to console where you usually have to restart the console to switch game anyway. It also serves the purpose of reducing the number of buttons you have to hold with one hand while plugging in.

The default controller mode button combinations are:

  • Mod X + Start + L - Melee mode (default)
  • Mod X + Start + Left - Project M/Project+ mode
  • Mod X + Start + Down - Ultimate mode
  • Mod X + Start + Right - FGC mode (Hitbox style fighting game layout)
  • Mod X + Start + B - Rivals of Aether mode
  • Mod X + Start + R - Rivals of Aether II mode

Default keyboard mode button combinations (only available when using DInput backend, not with XInput):

  • Mod Y + Start + L - Default keyboard mode

Dolphin setup

HayBox needs a different Dolphin controller profile than the official B0XX firmware, as it uses different DInput mappings that make more sense for use across multiple games. These can be found in the dolphin folder in the HayBox repo. The profile files are named to indicate what communication backend and operating system they are for:

  • For Windows:
    • HayBox_XInput.ini - For Pico/RP2040-based controllers (e.g. B0XX R4)
    • HayBox_DInput.ini - For Arduino/AVR-based controllers (e.g. B0XX R1-3, LBX)
  • For Linux:
    • HayBox_XInput_Linux.ini - For Pico/RP2040-based controllers (e.g. B0XX R4)
    • HayBox_DInput_Linux.ini - For Arduino/AVR-based controllers (e.g. B0XX R1-3, LBX)
  • For macOS (unsupported*):
    • HayBox_DInput_macOS.ini

To install the profile:

  1. Copy the appropriate .ini file from the dolphin folder within HayBox to the folder <YourDolphinInstallation>\User\Config\Profiles\GCPad\ (create it if it does not exist)
  • For Slippi this should be
    • On Windows: %appdata%\Slippi Launcher\netplay\User\Config\Profiles\GCPad\
    • On Linux: ~/.config/SlippiOnline/Config/Profiles/GCPad/
    • On Mac: Cmd + Shift + G and enter the path /Users/<USER>/Library/Application Support/Slippi Launcher/netplay/Slippi Dolphin.app/Contents/Resources/Sys/Config/Profiles/GCPad
  • For vanilla Dolphin:
    • On Windows: %userprofile%\Documents\Dolphin Emulator\Config\Profiles\GCPad\
    • On Linux: ~/.config/dolphin-emu/Profiles/GCPad/
  1. Plug in your controller, and configure a "Standard Controller" in Dolphin
  2. Click Refresh next to the Device dropdown
  3. Select the HayBox profile from the profile dropdown, and click Load (NOT Save)
  4. Make sure the correct device is selected in the device dropdown
  5. Click Close

* macOS only supports DInput (and not very well), so if using a Pico/RP2040-based controller you will have to force DInput mode by holding Z on plugin, and even then it may not work. I can't really do anything about Apple's poor controller support (which they seem to break with every other update) and I don't own any Apple devices, so this will also be considered unsupported usage of HayBox.

Customisation

Console/gamemode selection bindings

Communication backends (console selection)

The communication backend (e.g. DInput, GameCube, or N64) is selected partly through auto detection and partly based on the buttons held on plugin. This is handled in config/<environment>/config.cpp, in the setup() function. The logic is fairly simple, and even if you don't have programming experience it shouldn't be too hard to see what's going on and change things if you wish.

The config folders corresponding to the Arduino environments are:

  • config/arduino_nativeusb/ for Arduino with native USB support (e.g. Leonardo, Micro)
  • config/arduino/ for Arduino without native USB support (e.g. Uno, Nano, Mega 2560)

For Arduino device configs you may notice that the number 125 is passed into GamecubeBackend(). This lets you change the polling rate e.g. if your DIY doesn't support native USB and you want to use it with an overclocked GameCube controller adapter. In that example, you could pass in 1000 to sync up to the 1000Hz polling rate, or 0 to disable this lag fix completely. Polling rate can be passed into the N64Backend constructor in the same way as this.

You may notice that 1000Hz polling rate works on console as well. Be aware that while this works, it will result in more input lag. The point of setting the polling rate here is so that the GameCube backend can delay until right before the next poll before reading the inputs, so that the inputs are fresh and not outdated.

For Pico/RP2040, it is not necessary to pass in a console polling rate, because the Pico has enough processing power to read/process inputs after receiving the console poll, so there is no need to predict when the poll will arrive and prepare things in advance.

Input modes

To configure the button holds for input modes (controller/keyboard modes), edit the select_mode() function in config/mode_selection.hpp. Each if statement is a button combination to select an input mode.

Most input modes support passing in an SOCD cleaning mode, e.g. socd::2IP_NO_REAC. See here for the other available modes.

Creating custom input modes

For creating new input modes, it helps if you know some C++, or at least have some programming experience. That said, you should be able to get by even without prior experience if you just base your new mode off the existing ones and refer to them as examples.

There are two types of input modes: ControllerMode and KeyboardMode

Keyboard modes

Keyboard modes are a little bit simpler so let's start there.

A KeyboardMode behaves as a standard keyboard and should work with any device that supports keyboards.

You are free to use whatever logic and programming tricks you like in the UpdateKeys() function to decide the outputs based on the input state. You could create input layers (like the D-Pad layer in Melee mode that is activated when holding Mod X and Mod Y), or other types of conditional inputs.

The list of available keycodes can be found here.

Remember that keyboard modes can only be activated when using the DInput communication backend (not XInput).

Controller modes

A ControllerMode takes a digital button input state and transforms it into an output state corresponding to a standard gamepad. Any ControllerMode will work with any CommunicationBackend. A CommunicationBackend simply reads inputs from one or more input sources, uses the current ControllerMode to update the outputs based on those inputs, and handles the sending of the outputs to the console or PC.

To create a ControllerMode, you just need to implement the functions UpdateDigitalOutputs() and UpdateAnalogOutputs().

UpdateDigitalOutputs() is very similar to the UpdateKeys() function in keyboard modes, with the difference that rather than calling a Press() function to immediately send inputs, we are simply setting the output state for this iteration. As the name indicates, we will only deal with the digital outputs in this function.

UpdateAnalogOutputs() is a bit more complicated. Firstly, it has to call UpdateDirections() before doing anything else. This function takes in values indicating whether your left and right sticks are pointing left/right/up/down. You also pass in the minimum, neutral (centre), and maximum stick analog values, so you can configure these on a per-mode basis. All this information is used to automatically set the stick analog values based on the inputs you passed in. This is all you need to do unless you want to implement modifiers.

UpdateDirections() also populates the variable directions with values indicating current stick direction, which can be 1, 0, or -1 for the X and Y axes for both sticks. These values make it much easier to write modifier logic.

After calling UpdateDirections(), add any modifier handling logic that you want. Remember that UpdateDirections() already set the default analog stick values, so when handling modifiers you only need to manually set the values for the axes that are actually being modified. Other than this, I can't teach how to write your modifier logic, so just look at the examples and play around.

Finally, set any analog trigger values that you need.

Note: Analog trigger outputs could just as well be handled in UpdateDigitalOutputs(), but I think it usually looks cleaner to keep them along with the other analog outputs.

Also note: You don't need to worry about resetting the output state or clearing anything from it. This is done automatically at the start of each iteration.

SOCD

In the constructor of each mode (for controller modes and keyboard modes), you can configure pairs of opposing direction inputs to apply SOCD cleaning to.

For example, in src/modes/Melee20Button.cpp:

_socd_pair_count = 4;
_socd_pairs = new socd::SocdPair[_socd_pair_count]{
    socd::SocdPair{&InputState::left,    &InputState::right,   socd_type},
    socd::SocdPair{ &InputState::down,   &InputState::up,      socd_type},
    socd::SocdPair{ &InputState::c_left, &InputState::c_right, socd_type},
    socd::SocdPair{ &InputState::c_down, &InputState::c_up,    socd_type},
};

This sets up left/right, down/up, C-Left/C-Right, and C-Down/C-Up as pairs of opposing cardinal directions for which SOCD cleaning will be applied. The SOCD cleaning is automatically done before UpdateDigitalOutputs() and UpdateAnalogOutputs(), and you do not need to worry about it any further than that.

For each SocdPair you can pass in an SocdType of your choosing. By default for most modes this is passed in as a single constructor parameter, but it is possible to pass in multiple parameters, or simply use a hardcoded value. Both of these approaches are exemplified in src/modes/FgcMode.cpp.

SocdType Description
SOCD_NEUTRAL Left + right = neutral - the default if no SocdType specified in the SocdPair
SOCD_2IP Second input priority - left -> left + right = right, and vice versa. Releasing the second direction gives the original direction
SOCD_2IP_NO_REAC Second input priority without reactivation - same as above, except releasing the second direction results in neutral. The original direction must be physically reactuated.
SOCD_DIR1_PRIORITY The first button in the SocdPair always takes priority over the second
SOCD_DIR2_PRIORITY The second button in the SocdPair always takes priority over the first
SOCD_NONE No SOCD resolution - the game decides

Note that you do not have to implement a HandleSocd() function like in the Melee20Button and Melee18Button modes. It is only overridden in these modes so that we can check if left and right are both held before SOCD cleaning, because when they are both held (without a vertical direction being held) we need to override all modifiers.

Mod X lightshield and R shield tilt

If your controller has no lightshield buttons, you may want to use Mod X for lightshield and put shield tilt on R instead. You can do this by using the Melee18Button mode instead of Melee20Button.

Mode-specific optional features

Melee modes

The Melee20Button and Melee18Button modes provide a choice of which coordinates to use when pressing down + right. By default, holding down + back will allow you to do automatic jab-cancels, which is a useful technique for some characters.

Another popular technique that uses the down + right diagonal is the so-called crouch/walk option-select. This technique involves holding down + forward at a certain angle while crouching, such that after crouch-cancelling an attack you will automatically start walking towards your opponent instead of going back into crouch. This can be very useful for tech-chasing, but the coordinates used for this technique do not allow you to auto jab-cancel.

This can be configured as seen in config/mode_selection.hpp by setting the crouch_walk_os option to true:

new Melee20Button(socd::SOCD_2IP_NO_REAC, { .crouch_walk_os = false })

You will also have to change this in your config/<environment>/config.cpp in order for it to be applied on plugin, as mode_selection.hpp only controls what happens when you switch mode.

Project M/Project+ mode

The ProjectM mode has some extra options to configure certain behaviours. As seen in config/mode_selection.hpp:

new ProjectM(
    socd::SOCD_2IP_NO_REAC,
    { .true_z_press = false, .ledgedash_max_jump_traj = true }
)

Firstly, the ledgedash_max_jump_traj option allows you to enable or disable the behaviour borrowed from Melee mode where holding left and right (and no vertical directions) will give a 1.0 cardinal regardless of modifiers being held.

If you change the SOCD mode to 2IP (with reactivation), you should also change this option to false if you want a smooth gameplay experience.

Secondly, the true_z_press option exists because Project M/Project+ do not handle Z presses the same way Melee does. Melee interprets a Z press as lightshield + A, and thus it can be used for L cancelling without locking you out of techs. In PM/P+, a Z press will trigger a tech and thus cause unwanted tech lockouts if used to L cancel. By default in HayBox, the ProjectM mode is set to use a macro of lightshield + A in order to preserve expected behaviour from Melee. However, this macro does not enable you to use tether/grapple attacks or grab items. To workaround this, you can press Mod X + Z to send a true Z input.

If this bothers you, and you just want to send a true Z input by default when pressing Z, you can set the true_z_press option to true.

Input sources

HayBox supports several input sources that can be read from to update the input state:

  • GpioButtonInput - The most commonly used, for reading switches/buttons connected directly to GPIO pins. The input mappings are defined by an array of GpioButtonMapping as can be seen in almost all existing configs.
  • SwitchMatrixInput - Similar to the above, but scans a keyboard style switch matrix instead of individual switches. A config for Crane's Model C<=53 is included at config/c53/config.cpp which serves as an example of how to define and use a switch matrix input source.
  • NunchukInput - Reads inputs from a Wii Nunchuk using i2c. This can be used for mixed input controllers (e.g. left hand uses a Nunchuk for movement, and right hand uses buttons for other controls)
  • GamecubeControllerInput - Similar to the above, but reads from a GameCube controller. Can be instantiated similarly to GamecubeBackend. Currently only implemented for Pico, and you must either run it on a different pio instance (pio0 or pio1) than any instances of GamecubeBackend, or make sure that both use the same PIO instruction memory offset.

Each input source has a "scan speed" value which indicates roughly how long it takes for it to read inputs. Fast input sources are always read at the last possible moment (at least on Pico), resulting in very low latency. Conversely, slow input sources are typically read quite long before they are needed, as they are too slow to be read in response to poll. Because of this, it is more ideal to be constantly reading those inputs on a separate core. This is not possible on AVR MCUs as they are all single core, but it is possible (and easy) on the Pico/RP2040. The bottom of the default Pico config config/pico/config.cpp illustrates this by using core1 to read Nunchuk inputs while core0 handles everything else. See the next section for more information about using core1.

In each config's setup() function, we build up an array of input sources, and then pass it into a communication backend. The communication backend decides when to read which input sources, because inputs need to be read at different points in time for different backends. We also build an array of communication backends, allowing more than one backend to be used at once. For example, in most configs, the B0XX input viewer backend is used as a secondary backend whenever the DInput backend is used. In each iteration, the main loop tells each of the backends to send their respective reports. In future, there could be more backends for things like writing information to an OLED display.

Using the Pico's second core

In each config, there are the functions setup() and loop(), where setup() runs first, and then loop() runs repeatedly until the device is powered off.

On Pico/RP2040, the setup() and loop() functions execute on core0, and you can add the functions setup1() and loop1() in order to run tasks on core1.

For example, to read GameCube controller inputs on core1:

GamecubeControllerInput *gcc = nullptr;

void setup1() {
    while (backends == nullptr) {
        tight_loop_contents();
    }

    gcc = new GamecubeControllerInput(gcc_pin, 2500, pio1);
}

void loop1() {
    if (backends != nullptr) {
        gcc->UpdateInputs(backends[0]->GetInputs());
    }
}

The while loop makes sure we wait until setup() on core0 has finished setting up the communication backends. We then create a GameCube controller input source with a polling rate of 2500Hz. We also run it on pio1 as an easy way to avoid interfering with any GameCube/N64 backends, which use pio0 unless otherwise specified. In loop1() we make the assumption that the primary backend is the first element of the backends array (which is configured in the same file anyway, so we aren't truly assuming anything we don't know) and directly scan the GameCube controller inputs into the backend's input state.

As a slightly crazier hypothetical example, one could even power all the controls for a two person arcade cabinet using a single Pico by creating two switch matrix input sources using say 10 pins each, and two GameCube backends, both on separate cores. The possibilities are endless.

Troubleshooting

Controller not working with console or GameCube adapter

If you are using an official adapter with an Arduino-based controller you will likely have to hold A on plugin which disables the polling latency optimisation by passing in a polling rate of 0 to the GamecubeBackend constructor.

If you are using an Arduino-based controller without a boost circuit, you will need 5V power so for Mayflash adapter you need both USB cables plugged in, and on console the rumble line needs to be intact. Pico works natively with 3.3V power so this isn't an issue.

Contributing

I welcome contributions and if you make an input mode that you want to share, feel free to make a pull request. Please install the clang-format plugin for VS Code and use it to format any code you want added.

Versioning

We use SemVer for versioning. For the versions available, see the tags on this repository.

Built With

Contributors

  • Jonathan Haylett - Creator - @JonnyHaystack
  • Crane - Creator of the DIYB0XX firmware, which served as a great reference/starting point - @Crane1195

See also the list of contributors who participated in this project.

Acknowledgments

  • The B0XX team, for designing and creating an incredible controller
  • @Crane1195 - for his DIYB0XX and GCCPCB projects, and for hours of answering my questions when I was first writing this
  • @MHeironimus - for the Arduino Joystick library
  • @NicoHood - for the Nintendo library
  • @GabrielBianconi - for the Arduino Nunchuk library
  • @earlephilhower - for the arduino-pico core
  • @maxgerhardt - for adding PlatformIO support for arduino-pico
  • The Arduino project and the Raspberry Pi Foundation - for all their open-source hardware and software

License

This project is licensed under the GNU GPL Version 3 - see the LICENSE file for details

About

Modular cross-platform firmware for digital or mixed analog/digital game controllers

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 96.1%
  • C 3.7%
  • Other 0.2%