-
Notifications
You must be signed in to change notification settings - Fork 543
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d7eb316
commit 209eba3
Showing
4 changed files
with
292 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
135 changes: 135 additions & 0 deletions
135
src/main/scala/com/amazon/deequ/repository/sparktable/SparkMetricsRepository.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
/** | ||
* Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not | ||
* use this file except in compliance with the License. A copy of the License | ||
* is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on | ||
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
* express or implied. See the License for the specific language governing | ||
* permissions and limitations under the License. | ||
* | ||
*/ | ||
package com.amazon.deequ.repository.sparktable | ||
|
||
import com.amazon.deequ.analyzers.Analyzer | ||
import com.amazon.deequ.analyzers.runners.AnalyzerContext | ||
import com.amazon.deequ.metrics.Metric | ||
import com.amazon.deequ.repository._ | ||
import org.apache.spark.sql.functions._ | ||
import org.apache.spark.sql.types.{StringType, StructField, StructType} | ||
import org.apache.spark.sql.{DataFrame, Row, SaveMode, SparkSession} | ||
|
||
class SparkTableMetricsRepository(session: SparkSession, tableName: String) extends MetricsRepository { | ||
|
||
private val SCHEMA = StructType(Array( | ||
StructField("result_key", StringType), | ||
StructField("metric_name", StringType), | ||
StructField("metric_value", StringType), | ||
StructField("result_timestamp", StringType), | ||
StructField("serialized_context", StringType) | ||
)) | ||
|
||
override def save(resultKey: ResultKey, analyzerContext: AnalyzerContext): Unit = { | ||
val serializedContext = AnalysisResultSerde.serialize(Seq(AnalysisResult(resultKey, analyzerContext))) | ||
|
||
val rows = analyzerContext.metricMap.map { case (analyzer, metric) => | ||
Row(resultKey.toString, analyzer.toString, metric.value.toString, | ||
resultKey.dataSetDate.toString, serializedContext) | ||
}.toSeq | ||
|
||
val metricDF = session.createDataFrame(session.sparkContext.parallelize(rows), SCHEMA) | ||
|
||
metricDF.write | ||
.mode(SaveMode.Append) | ||
.saveAsTable(tableName) | ||
} | ||
|
||
override def loadByKey(resultKey: ResultKey): Option[AnalyzerContext] = { | ||
val df: DataFrame = session.table(tableName) | ||
val matchingRows = df.filter(col("result_key") === resultKey.toString).collect() | ||
|
||
if (matchingRows.isEmpty) { | ||
None | ||
} else { | ||
val serializedContext = matchingRows(0).getAs[String]("serialized_context") | ||
val analysisResult = AnalysisResultSerde.deserialize(serializedContext).head | ||
Some(analysisResult.analyzerContext) | ||
} | ||
} | ||
|
||
override def load(): MetricsRepositoryMultipleResultsLoader = { | ||
SparkTableMetricsRepositoryMultipleResultsLoader(session, tableName) | ||
} | ||
|
||
} | ||
|
||
|
||
case class SparkTableMetricsRepositoryMultipleResultsLoader(session: SparkSession, | ||
tableName: String, | ||
tagValues: Option[Map[String, String]] = None, | ||
analyzers: Option[Seq[Analyzer[_, Metric[_]]]] = None, | ||
timeAfter: Option[Long] = None, | ||
timeBefore: Option[Long] = None | ||
) extends MetricsRepositoryMultipleResultsLoader { | ||
|
||
override def withTagValues(tagValues: Map[String, String]): MetricsRepositoryMultipleResultsLoader = | ||
this.copy(tagValues = Some(tagValues)) | ||
|
||
override def forAnalyzers(analyzers: Seq[Analyzer[_, Metric[_]]]): MetricsRepositoryMultipleResultsLoader = | ||
this.copy(analyzers = Some(analyzers)) | ||
|
||
override def after(dateTime: Long): MetricsRepositoryMultipleResultsLoader = | ||
this.copy(timeAfter = Some(dateTime)) | ||
|
||
override def before(dateTime: Long): MetricsRepositoryMultipleResultsLoader = | ||
this.copy(timeBefore = Some(dateTime)) | ||
|
||
override def get(): Seq[AnalysisResult] = { | ||
val initialDF: DataFrame = session.table(tableName) | ||
|
||
initialDF.printSchema() | ||
val tagValuesFilter: DataFrame => DataFrame = df => { | ||
tagValues.map { tags => | ||
tags.foldLeft(df) { (currentDF, tag) => | ||
currentDF.filter(row => { | ||
val ser = row.getAs[String]("serialized_context") | ||
AnalysisResultSerde.deserialize(ser).exists(ar => { | ||
val tags = ar.resultKey.tags | ||
tags.contains(tag._1) && tags(tag._1) == tag._2 | ||
}) | ||
}) | ||
} | ||
}.getOrElse(df) | ||
} | ||
|
||
val specificAnalyzersFilter: DataFrame => DataFrame = df => { | ||
analyzers.map(analyzers => df.filter(col("metric_name").isin(analyzers.map(_.toString): _*))) | ||
.getOrElse(df) | ||
} | ||
|
||
val timeAfterFilter: DataFrame => DataFrame = df => { | ||
timeAfter.map(time => df.filter(col("result_timestamp") > time.toString)).getOrElse(df) | ||
} | ||
|
||
val timeBeforeFilter: DataFrame => DataFrame = df => { | ||
timeBefore.map(time => df.filter(col("result_timestamp") < time.toString)).getOrElse(df) | ||
} | ||
|
||
val filteredDF = Seq(tagValuesFilter, specificAnalyzersFilter, timeAfterFilter, timeBeforeFilter) | ||
.foldLeft(initialDF) { | ||
(df, filter) => filter(df) | ||
} | ||
|
||
// Convert the final DataFrame to the desired output format | ||
filteredDF.collect().flatMap(row => { | ||
val serializedContext = row.getAs[String]("serialized_context") | ||
AnalysisResultSerde.deserialize(serializedContext) | ||
}).toSeq | ||
} | ||
|
||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
119 changes: 119 additions & 0 deletions
119
src/test/scala/com/amazon/deequ/repository/sparktable/SparkTableMetricsRepositoryTest.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
/** | ||
* Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not | ||
* use this file except in compliance with the License. A copy of the License | ||
* is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on | ||
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
* express or implied. See the License for the specific language governing | ||
* permissions and limitations under the License. | ||
* | ||
*/ | ||
|
||
package com.amazon.deequ.repository.sparktable | ||
|
||
import com.amazon.deequ.SparkContextSpec | ||
import com.amazon.deequ.analyzers.Size | ||
import com.amazon.deequ.analyzers.runners.AnalyzerContext | ||
import com.amazon.deequ.metrics.{DoubleMetric, Entity} | ||
import com.amazon.deequ.repository.ResultKey | ||
import com.amazon.deequ.utils.FixtureSupport | ||
import org.scalatest.wordspec.AnyWordSpec | ||
|
||
import scala.util.Try | ||
|
||
class SparkTableMetricsRepositoryTest extends AnyWordSpec | ||
with SparkContextSpec | ||
with FixtureSupport { | ||
|
||
// private var spark: SparkSession = _ | ||
// private var repository: SparkTableMetricsRepository = _ | ||
private val analyzer = Size() | ||
|
||
"spark table metrics repository " should { | ||
"save and load a single metric" in withSparkSession { spark => { | ||
val resultKey = ResultKey(System.currentTimeMillis(), Map("tag" -> "value")) | ||
val metric = DoubleMetric(Entity.Column, "m1", "", Try(100)) | ||
val context = AnalyzerContext(Map(analyzer -> metric)) | ||
|
||
val repository = new SparkTableMetricsRepository(spark, "metrics_table") | ||
// Save the metric | ||
repository.save(resultKey, context) | ||
|
||
// Load the metric | ||
val loadedContext = repository.loadByKey(resultKey) | ||
|
||
assert(loadedContext.isDefined) | ||
assert(loadedContext.get.metric(analyzer).contains(metric)) | ||
} | ||
|
||
} | ||
|
||
"save multiple metrics and load them" in withSparkSession { spark => { | ||
val repository = new SparkTableMetricsRepository(spark, "metrics_table") | ||
|
||
val resultKey1 = ResultKey(System.currentTimeMillis(), Map("tag" -> "tagValue1")) | ||
val metric = DoubleMetric(Entity.Column, "m1", "", Try(100)) | ||
val context1 = AnalyzerContext(Map(analyzer -> metric)) | ||
|
||
val resultKey2 = ResultKey(System.currentTimeMillis(), Map("tag" -> "tagValue2")) | ||
val metric2 = DoubleMetric(Entity.Column, "m2", "", Try(101)) | ||
val context2 = AnalyzerContext(Map(analyzer -> metric2)) | ||
|
||
repository.save(resultKey1, context1) | ||
repository.save(resultKey2, context2) | ||
|
||
val loadedMetrics = repository.load().get() | ||
|
||
assert(loadedMetrics.length == 2) | ||
|
||
loadedMetrics.flatMap(_.resultKey.tags) | ||
} | ||
} | ||
|
||
"save and load metrics with tag" in withSparkSession { spark => { | ||
val repository = new SparkTableMetricsRepository(spark, "metrics_table") | ||
|
||
val resultKey1 = ResultKey(System.currentTimeMillis(), Map("tag" -> "A")) | ||
val metric = DoubleMetric(Entity.Column, "m1", "", Try(100)) | ||
val context1 = AnalyzerContext(Map(analyzer -> metric)) | ||
|
||
val resultKey2 = ResultKey(System.currentTimeMillis(), Map("tag" -> "B")) | ||
val metric2 = DoubleMetric(Entity.Column, "m2", "", Try(101)) | ||
val context2 = AnalyzerContext(Map(analyzer -> metric2)) | ||
|
||
repository.save(resultKey1, context1) | ||
repository.save(resultKey2, context2) | ||
val loadedMetricsForTagA = repository.load().withTagValues(Map("tag" -> "A")).get() | ||
assert(loadedMetricsForTagA.length == 1) | ||
// additional assertions to ensure the loaded metric is the one with tag "A" | ||
|
||
val loadedMetricsForMetricM1 = repository.load().forAnalyzers(Seq(analyzer)) | ||
assert(loadedMetricsForTagA.length == 1) | ||
|
||
} | ||
} | ||
|
||
"save and load to iceberg a single metric" in withSparkSessionIcebergCatalog { spark => { | ||
val resultKey = ResultKey(System.currentTimeMillis(), Map("tag" -> "value")) | ||
val metric = DoubleMetric(Entity.Column, "m1", "", Try(100)) | ||
val context = AnalyzerContext(Map(analyzer -> metric)) | ||
|
||
val repository = new SparkTableMetricsRepository(spark, "local.metrics_table") | ||
// Save the metric | ||
repository.save(resultKey, context) | ||
|
||
// Load the metric | ||
val loadedContext = repository.loadByKey(resultKey) | ||
|
||
assert(loadedContext.isDefined) | ||
assert(loadedContext.get.metric(analyzer).contains(metric)) | ||
} | ||
|
||
} | ||
} | ||
} |