Setup • Usage • Experiments • Citation
This is the implementation of our paper: Bao Duong and Thin Nguyen. Heteroscedastic Causal Structure Learning. Accepted at the 26th European Conference on Artificial Intelligence (ECAI 2023).
conda env create -n host --file env_loose.yml # or env_strict.yml
conda activate host
from src.data_gen import simulate_cd
from src.methods.HOST import HOST
if __name__ == '__main__':
data, dag_gt = simulate_cd(N=500, d=5, dag_type='ER', k=1, random_state=0)
perm, dag = HOST(X=data, return_dag=True)
For example, to run Figure 1 experiment:
python experiments/synthetic/perm.py --methods HOST --n_jobs=8
Experiment configuration can be set in experiments/*/config.yml
, and result dataframes are stored in experiments/*/results/
after the command is finished.
@article{duong2023heteroscedastic,
title={Heteroscedastic Causal Structure Learning},
author={Bao Duong and Thin Nguyen},
year={2023},
journal={arXiv preprint arXiv:2307.07973}
}