Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ISAM2: Add variables before computing delta #1707

Merged
merged 3 commits into from
Aug 25, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion gtsam/geometry/Rot2.h
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ namespace gtsam {
return fromAngle(theta * degree);
}

/// Named constructor from cos(theta),sin(theta) pair, will *not* normalize!
/// Named constructor from cos(theta),sin(theta) pair
static Rot2 fromCosSin(double c, double s);

/**
Expand Down
15 changes: 9 additions & 6 deletions gtsam/nonlinear/ISAM2.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -424,6 +424,11 @@ ISAM2Result ISAM2::update(const NonlinearFactorGraph& newFactors,
ISAM2Result result(params_.enableDetailedResults);
UpdateImpl update(params_, updateParams);

// Initialize any new variables \Theta_{new} and add
// \Theta:=\Theta\cup\Theta_{new}.
// Needed before delta update if using Dogleg optimizer.
addVariables(newTheta, result.details());

// Update delta if we need it to check relinearization later
if (update.relinarizationNeeded(update_count_))
updateDelta(updateParams.forceFullSolve);
Expand All @@ -435,9 +440,7 @@ ISAM2Result ISAM2::update(const NonlinearFactorGraph& newFactors,
update.computeUnusedKeys(newFactors, variableIndex_,
result.keysWithRemovedFactors, &result.unusedKeys);

// 2. Initialize any new variables \Theta_{new} and add
// \Theta:=\Theta\cup\Theta_{new}.
addVariables(newTheta, result.details());
// 2. Compute new error to check for relinearization
if (params_.evaluateNonlinearError)
update.error(nonlinearFactors_, calculateEstimate(), &result.errorBefore);

Expand Down Expand Up @@ -731,6 +734,7 @@ void ISAM2::updateDelta(bool forceFullSolve) const {
effectiveWildfireThreshold, &delta_);
deltaReplacedMask_.clear();
gttoc(Wildfire_update);

} else if (std::holds_alternative<ISAM2DoglegParams>(params_.optimizationParams)) {
// If using Dogleg, do a Dogleg step
const ISAM2DoglegParams& doglegParams =
Expand Down Expand Up @@ -769,9 +773,8 @@ void ISAM2::updateDelta(bool forceFullSolve) const {
gttic(Copy_dx_d);
// Update Delta and linear step
doglegDelta_ = doglegResult.delta;
delta_ =
doglegResult
.dx_d; // Copy the VectorValues containing with the linear solution
// Copy the VectorValues containing with the linear solution
delta_ = doglegResult.dx_d;
gttoc(Copy_dx_d);
} else {
throw std::runtime_error("iSAM2: unknown ISAM2Params type");
Expand Down
122 changes: 117 additions & 5 deletions tests/testDoglegOptimizer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,9 @@
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/slam/SmartProjectionPoseFactor.h>
#include "examples/SFMdata.h"

#include <functional>

Expand All @@ -36,7 +35,6 @@ using namespace gtsam;

// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;

/* ************************************************************************* */
TEST(DoglegOptimizer, ComputeBlend) {
Expand Down Expand Up @@ -185,6 +183,120 @@ TEST(DoglegOptimizer, Constraint) {
#endif
}

/* ************************************************************************* */
TEST(DogLegOptimizer, VariableUpdate) {
// Make the typename short so it looks much cleaner
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;

// create a typedef to the camera type
typedef PinholePose<Cal3_S2> Camera;
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));

// Define the camera observation noise model
noiseModel::Isotropic::shared_ptr measurementNoise =
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v

// Create the set of ground-truth landmarks and poses
vector<Point3> points = createPoints();
vector<Pose3> poses = createPoses();

// Create a factor graph
NonlinearFactorGraph graph;

ISAM2DoglegParams doglegparams = ISAM2DoglegParams();
doglegparams.verbose = false;
ISAM2Params isam2_params;
isam2_params.evaluateNonlinearError = true;
isam2_params.relinearizeThreshold = 0.0;
isam2_params.enableRelinearization = true;
isam2_params.optimizationParams = doglegparams;
isam2_params.relinearizeSkip = 1;
ISAM2 isam2(isam2_params);

// Simulated measurements from each camera pose, adding them to the factor
// graph
unordered_map<int, SmartFactor::shared_ptr> smart_factors;
for (size_t j = 0; j < points.size(); ++j) {
// every landmark represent a single landmark, we use shared pointer to init
// the factor, and then insert measurements.
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));

for (size_t i = 0; i < poses.size(); ++i) {
// generate the 2D measurement
Camera camera(poses[i], K);
Point2 measurement = camera.project(points[j]);

// call add() function to add measurement into a single factor, here we
// need to add:
// 1. the 2D measurement
// 2. the corresponding camera's key
// 3. camera noise model
// 4. camera calibration

// add only first 3 measurements and update the later measurements
// incrementally
if (i < 3) smartfactor->add(measurement, i);
}

// insert the smart factor in the graph
smart_factors[j] = smartfactor;
graph.push_back(smartfactor);
}

// Add a prior on pose x0. This indirectly specifies where the origin is.
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
graph.emplace_shared<PriorFactor<Pose3> >(0, poses[0], noise);

// Because the structure-from-motion problem has a scale ambiguity, the
// problem is still under-constrained. Here we add a prior on the second pose
// x1, so this will fix the scale by indicating the distance between x0 and
// x1. Because these two are fixed, the rest of the poses will be also be
// fixed.
graph.emplace_shared<PriorFactor<Pose3> >(1, poses[1],
noise); // add directly to graph

// Create the initial estimate to the solution
// Intentionally initialize the variables off from the ground truth
Values initialEstimate;
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
for (size_t i = 0; i < 3; ++i)
initialEstimate.insert(i, poses[i].compose(delta));
// initialEstimate.print("Initial Estimates:\n");

// Optimize the graph and print results
isam2.update(graph, initialEstimate);
Values result = isam2.calculateEstimate();
// result.print("Results:\n");

// we add new measurements from this pose
size_t pose_idx = 3;

// Now update existing smart factors with new observations
for (size_t j = 0; j < points.size(); ++j) {
SmartFactor::shared_ptr smartfactor = smart_factors[j];

// add the 4th measurement
Camera camera(poses[pose_idx], K);
Point2 measurement = camera.project(points[j]);
smartfactor->add(measurement, pose_idx);
}

graph.resize(0);
initialEstimate.clear();

// update initial estimate for the new pose
initialEstimate.insert(pose_idx, poses[pose_idx].compose(delta));

// this should break the system
isam2.update(graph, initialEstimate);
result = isam2.calculateEstimate();
EXPECT(std::find(result.keys().begin(), result.keys().end(), pose_idx) !=
result.keys().end());
}

/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */