Skip to content

Commit

Permalink
rearrange terms
Browse files Browse the repository at this point in the history
  • Loading branch information
breandan committed Nov 5, 2024
1 parent 5b40480 commit 3350c99
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 2 deletions.
Binary file modified latex/thesis/Thesis.pdf
Binary file not shown.
4 changes: 2 additions & 2 deletions latex/thesis/content/Ch2_Formal_Language_Theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ \chapter{\rm\bfseries Formal Language Theory}
f(x) &= \frac{-x^2 + 1 \pm \sqrt{x^4 - 6x^2 + 1}}{2}
\end{align*}

\noindent We also have that $f(x)=\sum _{n=0}^{\infty }f_nx^{n}$, so to obtain the number of ambiguous Dyck trees of size $n$, we can extract the $n$th coefficient of $f_n$ using the binomial series. Expanding $1 + \sqrt{x^4 - 6x^2 + 1}$, we obtain:
\noindent We also have that $f(x)=\sum _{n=0}^{\infty }f_nx^{n}$, so to obtain the number of ambiguous Dyck trees of size $n$, we can extract the $n$th coefficient of $f_n$ using the binomial series. Expanding $\sqrt{x^4 - 6x^2 + 1}$, we obtain:

\begin{align*}
f(x) = (1+x)^{\alpha }&=\sum _{k=0}^{\infty }\;{\binom {\alpha }{k}}\;x^{k}\\
Expand All @@ -38,7 +38,7 @@ \chapter{\rm\bfseries Formal Language Theory}

\begin{align*}
[x^n]f(x) &= [x^n]\frac{-x^2 + 1}{2} + \frac{1}{2}[x^n]\sum _{k=0}^{\infty }\;{\binom {\frac{1}{2} }{k}}\;(x^4 - 6x^2)^{k}\\
[x^n]f(x) &= [x^n]\frac{-x^2 + 1}{2} + \frac{1}{2}{\binom {\frac{1}{2} }{n}}\;(x^4 - 6x^2)^n
[x^n]f(x) &= \frac{1}{2}{\binom {\frac{1}{2} }{n}}\;[x^n](x^4 - 6x^2)^n = \frac{1}{2}{\binom {\frac{1}{2} }{n}}\;[x^n](x^2 - 6x)^n
\end{align*}

This lets us understand grammars as a kind of algebra, which is useful for enumerative combinatorics on words and syntax-guided synthesis.
Expand Down

0 comments on commit 3350c99

Please sign in to comment.