Enterprise-Grade Network Anomaly Detection System
Leveraging Machine Learning & OMNeT++ for Advanced Network Security
A cutting-edge network anomaly detection system that combines advanced machine learning algorithms with OMNeT++ simulation capabilities. Our system focuses on robust data collection and analysis, with a planned evolution towards real-time detection and dynamic adaptation capabilities.
graph TD
A[Data Collection Layer] --> B[Preprocessing Engine]
B --> C[Feature Extraction]
C --> D[ML Pipeline]
D --> E[Anomaly Detection]
subgraph "Data Processing"
B --> F[Data Cleaning]
F --> G[Feature Engineering]
G --> H[Data Validation]
end
subgraph "ML Components"
D --> I[Model Training]
I --> J[Model Validation]
J --> K[Model Deployment]
end
π Key Features & Capabilities
Feature | Current Status | Future Goal | Implementation Details |
---|---|---|---|
Data Collection | β Operational | Enhanced real-time capabilities | Custom packet capture, PCAP analysis, Traffic sampling |
ML Processing | β Offline Analysis | Real-time processing | TensorFlow-based models, Scikit-learn pipelines |
OMNeT++ Integration | π Basic Setup | Full real-time integration | Custom modules, Network scenarios |
Adaptation | π Static Models | Dynamic network-agnostic models | Transfer learning, Online adaptation |
Visualization | π Basic Metrics | Interactive real-time dashboards | Grafana integration, Custom dashboards |
|
|
Phase | Status | Deliverable | Weight | Documentation |
---|---|---|---|---|
Research Proposal | β | Proposal Document | 10% | View |
Simulation Tools Study | β | Technical Report | 10% | View |
Network Design | β | Design Document | 20% | View |
Simulation Experiments | β | Results Report | 20% | View |
Research Article | β | IEEE Paper | 20% | View |
Final Presentation | β | Presentation | 20% | View |
Dynamic Adaptation Framework
class DynamicNetworkDetector:
"""
Advanced network anomaly detection with dynamic adaptation capabilities.
Supports real-time model updates and network-agnostic detection.
"""
def __init__(self, config: Dict[str, Any]):
self.base_model = self._initialize_model(config)
self.network_profiles: Dict[str, NetworkProfile] = {}
self.adaptation_metrics: List[AdaptationMetric] = []
self.feature_extractors: Dict[str, FeatureExtractor] = {}
async def adapt_to_network(self, network_type: str) -> bool:
"""
Dynamically adjust model parameters based on network characteristics.
Args:
network_type: Type of network to adapt to
Returns:
bool: Success status of adaptation
"""
try:
profile = self.network_profiles.get(network_type)
if not profile:
profile = await self._create_network_profile(network_type)
return await self._adapt_model_parameters(profile)
except AdaptationError as e:
logger.error(f"Adaptation failed: {e}")
return False
async def update_model_realtime(self, new_data: NetworkData) -> ModelUpdateResult:
"""
Update model in real-time with streaming network data.
Args:
new_data: New network data for model update
Returns:
ModelUpdateResult: Results of model update
"""
validation_result = await self._validate_data(new_data)
if validation_result.is_valid:
return await self._update_model(new_data)
return ModelUpdateResult(success=False, error=validation_result.error)
OMNeT++ Integration
/**
* Real-time anomaly detection module for OMNeT++
* Supports live traffic analysis and model adaptation
*/
class RealTimeAnomalyDetector : public cSimpleModule {
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
private:
// Core components
std::unique_ptr<MLModel> anomalyModel;
std::unique_ptr<DataProcessor> streamProcessor;
// Configuration
DetectorConfig config;
// Performance monitoring
Statistics stats;
// Helper methods
void processPacket(Packet *packet);
void updateModel(const DataBatch& batch);
void reportAnomaly(const AnomalyEvent& event);
};
|
|
Batu Burgu |
Javad Ibrahimli |
Kerem Karadeniz |
---|---|---|
ID: 0402010098 | ID: 040210932 | ID: 0402110049 |