Skip to content

DSGN++: Exploiting Visual-Spatial Relation for Stereo-based 3D Detectors (T-PAMI 2022)

License

Notifications You must be signed in to change notification settings

chenyilun95/DSGN2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSGN++ (T-PAMI 2022)

PWC PWC PWC

This is the official implementation of the paper ""DSGN++: Exploiting Visual-Spatial Relation for Stereo-based 3D Detectors"" to jointly estimate scene depth and detect 3D objects in 3D world. With input of binocular image pair, our model achieves over 70+ AP on the KITTI val dataset.

DSGN++: Exploiting Visual-Spatial Relation for Stereo-based 3D Detectors
Authors: Yilun Chen, Shijia Huang, Shu Liu, Bei Yu, Jiaya Jia

[Paper]   [Demo Video] 

Update

  • 7/2022: We released the first vision-based model that achieved 70+ AP on the KITTI val set.

Model Framework

Data Preparation

(1) Download the KITTI 3D object detection dataset including velodyne, stereo images, calibration matrices, and the road plane. The folders are organized as follows:

ROOT_PATH
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & image_3 & planes
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2 & image_3
├── pcdet
├── mmdetection-v2.22.0

(2) Generate KITTI data list and joint Stereo-Lidar Copy-Paste database for training.

python -m pcdet.datasets.kitti.lidar_kitti_dataset create_kitti_infos
python -m pcdet.datasets.kitti.lidar_kitti_dataset create_gt_database_only --image_crops

Keep in mind that download and put the pre-computed road plane to ./kitti/training/planes for precise copy-paste augmentation.

Installation

(1) Clone this repository.

git clone https://github.com/chenyilun95/DSGN2 
cd DSGN2

(2) Install mmcv-1.4.0 library.

pip install pycocotools==2.0.2
pip install torch==1.7.1 torchvision==0.8.2
pip install -U mim
mim install mmcv-full==1.4.0

(3) Install the spconv library.

sudo apt install libboost-dev
git clone https://github.com/traveller59/spconv --recursive
cd spconv
git reset --hard f22dd9
git submodule update --recursive
python setup.py bdist_wheel
pip install ./dist/spconv-1.2.1-xxx.whl

(4) Install the included mmdetection-v2.22.0.

cd mmdetection-v2.22.0
pip install -e .

(5) Install OpenPCDet library.

pip install -e .

Training and Inference

Train the model by

python -m torch.distributed.launch --nproc_per_node=4 tools/train.py \
    --launcher pytorch \
    --fix_random_seed \
    --workers 2 \
    --sync_bn \
    --save_to_file \
    --cfg_file ./configs/stereo/kitti_models/dsgn2.yaml \
    --tcp_port 12345 \
    --continue_train

Evaluating the model by

python -m torch.distributed.launch --nproc_per_node=4 tools/test.py \
    --launcher pytorch \
    --workers 2 \
    --save_to_file \
    --cfg_file ./configs/stereo/kitti_models/dsgn2.yaml \
    --exp_name default \
    --tcp_port 12345 \
    --ckpt_id 60 

The evaluation results can be found in the outputing model folder.

Performance and Model Zoo

We provide the pretrained models of DSGN2 evaluated on the KITTI val set.

Methods Car Ped. Cyc. Models
DSGN++ 70.05 39.42 44.47 GoogleDrive

Citation

If you find our work useful in your research, please consider citing:

@ARTICLE{chen2022dsgn++,
  title={DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors}, 
  author={Chen, Yilun and Huang, Shijia and Liu, Shu and Yu, Bei and Jia, Jiaya},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  year={2022}
}

Acknowledgment

Our code is based on several released code repositories. We thank the great code from LIGA-Stereo, OpenPCDet, mmdetection.

Contact

If you get troubles or suggestions for this repository, please feel free to contact me ([email protected]).

About

DSGN++: Exploiting Visual-Spatial Relation for Stereo-based 3D Detectors (T-PAMI 2022)

Resources

License

Stars

Watchers

Forks