Skip to content

Commit

Permalink
markdown source builds
Browse files Browse the repository at this point in the history
Auto-generated via `{sandpaper}`
Source  : 711443a
Branch  : main
Author  : enerammer <[email protected]>
Time    : 2024-11-13 09:13:59 +0000
Message : Merge pull request KUBDatalab#176 from chrbknudsen/main

Regne eksempel på SEXRAT i datasæt
  • Loading branch information
actions-user committed Nov 13, 2024
1 parent c98c1dd commit 2cf7a63
Show file tree
Hide file tree
Showing 6 changed files with 59 additions and 59 deletions.
4 changes: 2 additions & 2 deletions clt.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ mean(random_numbers)
```

``` output
[1] 0.5487439
[1] 0.5193978
```
The important point of the Central Limit Theorem is, that if we take a large
number of random samples, and calculate the mean of each of these samples,
Expand All @@ -59,7 +59,7 @@ mean(runif(100))
```

``` output
[1] 0.4917325
[1] 0.5577847
```
And we can use the `replicate()` function to repeat that calculation several times, in this case 1000 times:

Expand Down
Binary file modified fig/clt-rendered-random-histogram-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/clt-rendered-repeated-means-histogram-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
38 changes: 19 additions & 19 deletions kmeans.md
Original file line number Diff line number Diff line change
Expand Up @@ -144,31 +144,31 @@ clustering
```

``` output
K-means clustering with 3 clusters of sizes 50, 28, 100
K-means clustering with 3 clusters of sizes 100, 50, 28
Cluster means:
Alcohol Malicacid Ash Alcalinityofash Magnesium Totalphenols Flavanoids
1 13.33680 2.396800 2.3718 18.51000 108.6000 2.432400 2.214800
2 13.82214 1.773929 2.4900 16.96429 105.3571 2.923929 3.111429
3 12.60250 2.463600 2.3293 20.69600 93.7400 2.050400 1.633500
1 12.60250 2.463600 2.3293 20.69600 93.7400 2.050400 1.633500
2 13.33680 2.396800 2.3718 18.51000 108.6000 2.432400 2.214800
3 13.82214 1.773929 2.4900 16.96429 105.3571 2.923929 3.111429
Nonflavanoidphenols Proanthocyanins Colorintensity Hue
1 0.3236000 1.707200 5.143600 0.966720
2 0.2985714 1.986786 6.202857 1.103571
3 0.3987000 1.421900 4.694800 0.911900
1 0.3987000 1.421900 4.694800 0.911900
2 0.3236000 1.707200 5.143600 0.966720
3 0.2985714 1.986786 6.202857 1.103571
OD280OD315ofdilutedwines Proline
1 2.862800 894.60
2 2.984643 1301.50
3 2.381700 517.75
1 2.381700 517.75
2 2.862800 894.60
3 2.984643 1301.50
Clustering vector:
[1] 1 1 2 2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 1 1 2 2 1 2 1 1 1
[38] 2 1 1 1 1 1 3 1 1 1 1 1 2 2 2 2 2 1 2 1 2 2 3 3 3 3 3 3 3 3 3 1 1 1 3 3 1
[75] 1 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3
[112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 3 3 1 1 3 3
[149] 3 3 3 3 3 3 3 1 3 1 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 1 1 1 3
[1] 2 2 3 3 2 3 3 3 2 2 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 2 2 3 3 2 3 2 2 2
[38] 3 2 2 2 2 2 1 2 2 2 2 2 3 3 3 3 3 2 3 2 3 3 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2
[75] 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 2 1 1
[149] 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 2 2 1
Within cluster sum of squares by cluster:
[1] 815783.7 550201.0 1263330.5
[1] 1263330.5 815783.7 550201.0
(between_SS / total_SS = 85.1 %)
Available components:
Expand All @@ -188,9 +188,9 @@ table()
``` output
true
quess 1 2 3
1 30 9 11
2 28 0 0
3 1 62 37
1 1 62 37
2 30 9 11
3 28 0 0
```

The algorithm have no idea about the numbering, the three groups are numbered
Expand Down
74 changes: 37 additions & 37 deletions md5sum.txt
Original file line number Diff line number Diff line change
@@ -1,38 +1,38 @@
"file" "checksum" "built" "date"
"CODE_OF_CONDUCT.md" "c93c83c630db2fe2462240bf72552548" "site/built/CODE_OF_CONDUCT.md" "2024-11-12"
"LICENSE.md" "b24ebbb41b14ca25cf6b8216dda83e5f" "site/built/LICENSE.md" "2024-11-12"
"config.yaml" "5514a53c965971f5454e4152c8760485" "site/built/config.yaml" "2024-11-12"
"index.md" "61394b6d8242b2ec5c69d9c2493cd74b" "site/built/index.md" "2024-11-12"
"links.md" "8184cf4149eafbf03ce8da8ff0778c14" "site/built/links.md" "2024-11-12"
"episodes/reproducible-analysis.Rmd" "976433176d38ef5f97b18f2b25794941" "site/built/reproducible-analysis.md" "2024-11-12"
"episodes/reading-files.Rmd" "16728c259f424282058f7c80997900d2" "site/built/reading-files.md" "2024-11-12"
"episodes/descript-stat.Rmd" "828abde6deb35bebf2b60f730d6eaff7" "site/built/descript-stat.md" "2024-11-12"
"episodes/table1.Rmd" "1615b0b67bb2e6a3d9a992a00d3edde3" "site/built/table1.md" "2024-11-12"
"episodes/tidy-data.Rmd" "32109e710bb7b47451b8783b246aa857" "site/built/tidy-data.md" "2024-11-12"
"episodes/normal-distribution.Rmd" "9fa78964d1ae9ad23dc093a58032603d" "site/built/normal-distribution.md" "2024-11-12"
"episodes/is-it-normal.Rmd" "11a13d7d94514cf399cdb8cf13434644" "site/built/is-it-normal.md" "2024-11-12"
"episodes/which-distribution.Rmd" "278d093f8a9183c0af804bb1a5d8d380" "site/built/which-distribution.md" "2024-11-12"
"episodes/linear-regression.Rmd" "a8c98e6aff61f5ac9d84cc8430482755" "site/built/linear-regression.md" "2024-11-12"
"episodes/multiple-linear-regression.Rmd" "824e184fc6e7b34e5da48ccdccd71a33" "site/built/multiple-linear-regression.md" "2024-11-12"
"episodes/logistic-regression.Rmd" "c30866b932a9aaae8ffc4d7c5b4e7c44" "site/built/logistic-regression.md" "2024-11-12"
"episodes/clt.Rmd" "3a95f0bc7a29f3292c4e1384769136c6" "site/built/clt.md" "2024-11-12"
"episodes/barcharts.Rmd" "d13860878ad4c21d2e5f62712340b5f9" "site/built/barcharts.md" "2024-11-12"
"episodes/powerberegninger.Rmd" "95cca947578947793867ed6420ad9c11" "site/built/powerberegninger.md" "2024-11-12"
"episodes/kmeans.Rmd" "4d50bf44423a43c6771e49b4d7644272" "site/built/kmeans.md" "2024-11-12"
"episodes/factor-analysis.Rmd" "3bfd44b44f7264e4512b16596a47807d" "site/built/factor-analysis.md" "2024-11-12"
"episodes/structure-you-work.Rmd" "e4840023cedfc41b1419e8f0393e2919" "site/built/structure-you-work.md" "2024-11-12"
"episodes/fence-test.Rmd" "c329445266c4cfd778728f6f5eafd613" "site/built/fence-test.md" "2024-11-12"
"episodes/design-principles.Rmd" "be6a1101577ab5464d8ed8c6ed698ea1" "site/built/design-principles.md" "2024-11-12"
"episodes/large-data.Rmd" "c23e056693250bbde7f18c4df53fa092" "site/built/large-data.md" "2024-11-12"
"episodes/making-a-new-course.Rmd" "7cd3dfe11f694d170bd106893a027c01" "site/built/making-a-new-course.md" "2024-11-12"
"episodes/r-intro-markdown-version-1.Rmd" "819605761bff624067141a7e23672c2e" "site/built/r-intro-markdown-version-1.md" "2024-11-12"
"episodes/r-intro-markdown-version-2.Rmd" "fde17f8881853a49e40590f4e9fb277e" "site/built/r-intro-markdown-version-2.md" "2024-11-12"
"instructors/instructor-notes.md" "5cf113fd22defb29d17b64597f3c9bc0" "site/built/instructor-notes.md" "2024-11-12"
"learners/CLT-dk.md" "a1852fcb44235823d23cd4a4af6d3d49" "site/built/CLT-dk.md" "2024-11-12"
"learners/CLT-en.md" "8ae8f14f05472820ef155acf980ae06f" "site/built/CLT-en.md" "2024-11-12"
"learners/data.md" "ea00775b10870101fca1d4bc12775606" "site/built/data.md" "2024-11-12"
"learners/reference.md" "527a12e217602daae51c5fd9ef8958df" "site/built/reference.md" "2024-11-12"
"learners/setup.md" "9b1b924cf88e06b154562a92250fcb76" "site/built/setup.md" "2024-11-12"
"poster/poster_dk.Rmd" "721a2b68eeb0b61308158bce41c6ae21" "site/built/poster_dk.md" "2024-11-12"
"profiles/learner-profiles.md" "5fe5bf7537072422b91ed393ada03f9a" "site/built/learner-profiles.md" "2024-11-12"
"renv/profiles/lesson-requirements/renv.lock" "1fce2e5ecd9517a17e1f83c38b238e34" "site/built/renv.lock" "2024-11-12"
"CODE_OF_CONDUCT.md" "c93c83c630db2fe2462240bf72552548" "site/built/CODE_OF_CONDUCT.md" "2024-11-13"
"LICENSE.md" "b24ebbb41b14ca25cf6b8216dda83e5f" "site/built/LICENSE.md" "2024-11-13"
"config.yaml" "5514a53c965971f5454e4152c8760485" "site/built/config.yaml" "2024-11-13"
"index.md" "61394b6d8242b2ec5c69d9c2493cd74b" "site/built/index.md" "2024-11-13"
"links.md" "8184cf4149eafbf03ce8da8ff0778c14" "site/built/links.md" "2024-11-13"
"episodes/reproducible-analysis.Rmd" "976433176d38ef5f97b18f2b25794941" "site/built/reproducible-analysis.md" "2024-11-13"
"episodes/reading-files.Rmd" "16728c259f424282058f7c80997900d2" "site/built/reading-files.md" "2024-11-13"
"episodes/descript-stat.Rmd" "828abde6deb35bebf2b60f730d6eaff7" "site/built/descript-stat.md" "2024-11-13"
"episodes/table1.Rmd" "1615b0b67bb2e6a3d9a992a00d3edde3" "site/built/table1.md" "2024-11-13"
"episodes/tidy-data.Rmd" "32109e710bb7b47451b8783b246aa857" "site/built/tidy-data.md" "2024-11-13"
"episodes/normal-distribution.Rmd" "9fa78964d1ae9ad23dc093a58032603d" "site/built/normal-distribution.md" "2024-11-13"
"episodes/is-it-normal.Rmd" "11a13d7d94514cf399cdb8cf13434644" "site/built/is-it-normal.md" "2024-11-13"
"episodes/which-distribution.Rmd" "278d093f8a9183c0af804bb1a5d8d380" "site/built/which-distribution.md" "2024-11-13"
"episodes/linear-regression.Rmd" "a8c98e6aff61f5ac9d84cc8430482755" "site/built/linear-regression.md" "2024-11-13"
"episodes/multiple-linear-regression.Rmd" "824e184fc6e7b34e5da48ccdccd71a33" "site/built/multiple-linear-regression.md" "2024-11-13"
"episodes/logistic-regression.Rmd" "c30866b932a9aaae8ffc4d7c5b4e7c44" "site/built/logistic-regression.md" "2024-11-13"
"episodes/clt.Rmd" "3a95f0bc7a29f3292c4e1384769136c6" "site/built/clt.md" "2024-11-13"
"episodes/barcharts.Rmd" "d13860878ad4c21d2e5f62712340b5f9" "site/built/barcharts.md" "2024-11-13"
"episodes/powerberegninger.Rmd" "95cca947578947793867ed6420ad9c11" "site/built/powerberegninger.md" "2024-11-13"
"episodes/kmeans.Rmd" "4d50bf44423a43c6771e49b4d7644272" "site/built/kmeans.md" "2024-11-13"
"episodes/factor-analysis.Rmd" "3bfd44b44f7264e4512b16596a47807d" "site/built/factor-analysis.md" "2024-11-13"
"episodes/structure-you-work.Rmd" "e4840023cedfc41b1419e8f0393e2919" "site/built/structure-you-work.md" "2024-11-13"
"episodes/fence-test.Rmd" "c329445266c4cfd778728f6f5eafd613" "site/built/fence-test.md" "2024-11-13"
"episodes/design-principles.Rmd" "be6a1101577ab5464d8ed8c6ed698ea1" "site/built/design-principles.md" "2024-11-13"
"episodes/large-data.Rmd" "c23e056693250bbde7f18c4df53fa092" "site/built/large-data.md" "2024-11-13"
"episodes/making-a-new-course.Rmd" "7cd3dfe11f694d170bd106893a027c01" "site/built/making-a-new-course.md" "2024-11-13"
"episodes/r-intro-markdown-version-1.Rmd" "819605761bff624067141a7e23672c2e" "site/built/r-intro-markdown-version-1.md" "2024-11-13"
"episodes/r-intro-markdown-version-2.Rmd" "fde17f8881853a49e40590f4e9fb277e" "site/built/r-intro-markdown-version-2.md" "2024-11-13"
"instructors/instructor-notes.md" "5cf113fd22defb29d17b64597f3c9bc0" "site/built/instructor-notes.md" "2024-11-13"
"learners/CLT-dk.md" "a1852fcb44235823d23cd4a4af6d3d49" "site/built/CLT-dk.md" "2024-11-13"
"learners/CLT-en.md" "8ae8f14f05472820ef155acf980ae06f" "site/built/CLT-en.md" "2024-11-13"
"learners/data.md" "ea00775b10870101fca1d4bc12775606" "site/built/data.md" "2024-11-13"
"learners/reference.md" "527a12e217602daae51c5fd9ef8958df" "site/built/reference.md" "2024-11-13"
"learners/setup.md" "9b1b924cf88e06b154562a92250fcb76" "site/built/setup.md" "2024-11-13"
"poster/poster_dk.Rmd" "721a2b68eeb0b61308158bce41c6ae21" "site/built/poster_dk.md" "2024-11-13"
"profiles/learner-profiles.md" "5fe5bf7537072422b91ed393ada03f9a" "site/built/learner-profiles.md" "2024-11-13"
"renv/profiles/lesson-requirements/renv.lock" "1fce2e5ecd9517a17e1f83c38b238e34" "site/built/renv.lock" "2024-11-13"
2 changes: 1 addition & 1 deletion normal-distribution.md
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,7 @@ rnorm(5, mean = 0, sd = 1 )
```

``` output
[1] -0.5854523 0.4889116 1.8896220 1.3496765 0.6922389
[1] 0.300443206 0.018065595 0.007747242 0.438378525 0.155126838
```
Den returnerer (her) fem tilfældige værdier fra en normalfordeling med (her)
middelværdi 0 og standardafvigelse 1.
Expand Down

0 comments on commit 2cf7a63

Please sign in to comment.