Skip to content

Commit

Permalink
fix(deps): Update dependency numpy to v2.1.0 (#229)
Browse files Browse the repository at this point in the history
This PR contains the following updates:

| Package | Update | Change |
|---|---|---|
| [numpy](https://numpy.org) ([source](https://togithub.com/numpy/numpy), [changelog](https://numpy.org/doc/stable/release)) | minor | `==2.0.1` -> `==2.1.0` |

---

### Release Notes

<details>
<summary>numpy/numpy (numpy)</summary>

### [`v2.1.0`](https://togithub.com/numpy/numpy/releases/tag/v2.1.0): 2.1.0 (Aug 18, 2024)

[Compare Source](https://togithub.com/numpy/numpy/compare/v2.0.2...v2.1.0)

### NumPy 2.1.0 Release Notes

NumPy 2.1.0 provides support for the upcoming Python 3.13 release and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get us back into our usual release
cycle after the extended development of 2.0. The highlights for this
release are:

-   Support for the array-api 2023.12 standard.
-   Support for Python 3.13.
-   Preliminary support for free threaded Python 3.13.

Python versions 3.10-3.13 are supported in this release.

#### New functions

##### New function `numpy.unstack`

A new function `np.unstack(array, axis=...)` was added, which splits an
array into a tuple of arrays along an axis. It serves as the inverse of
\[numpy.stack]{.title-ref}.

([gh-26579](https://togithub.com/numpy/numpy/pull/26579))

#### Deprecations

-   The `fix_imports` keyword argument in `numpy.save` is deprecated.
    Since NumPy 1.17, `numpy.save` uses a pickle protocol that no longer
    supports Python 2, and ignored `fix_imports` keyword. This keyword
    is kept only for backward compatibility. It is now deprecated.

    ([gh-26452](https://togithub.com/numpy/numpy/pull/26452))

-   Passing non-integer inputs as the first argument of
    \[bincount]{.title-ref} is now deprecated, because such inputs are
    silently cast to integers with no warning about loss of precision.

    ([gh-27076](https://togithub.com/numpy/numpy/pull/27076))

#### Expired deprecations

-   Scalars and 0D arrays are disallowed for `numpy.nonzero` and
    `numpy.ndarray.nonzero`.

    ([gh-26268](https://togithub.com/numpy/numpy/pull/26268))

-   `set_string_function` internal function was removed and
    `PyArray_SetStringFunction` was stubbed out.

    ([gh-26611](https://togithub.com/numpy/numpy/pull/26611))

#### C API changes

##### API symbols now hidden but customizable

NumPy now defaults to hide the API symbols it adds to allow all NumPy
API usage. This means that by default you cannot dynamically fetch the
NumPy API from another library (this was never possible on windows).

If you are experiencing linking errors related to `PyArray_API` or
`PyArray_RUNTIME_VERSION`, you can define the `NPY_API_SYMBOL_ATTRIBUTE`
to opt-out of this change.

If you are experiencing problems due to an upstream header including
NumPy, the solution is to make sure you
`#include "numpy/ndarrayobject.h"` before their header and import NumPy
yourself based on `including-the-c-api`.

([gh-26103](https://togithub.com/numpy/numpy/pull/26103))

##### Many shims removed from npy\_3kcompat.h

Many of the old shims and helper functions were removed from
`npy_3kcompat.h`. If you find yourself in need of these, vendor the
previous version of the file into your codebase.

([gh-26842](https://togithub.com/numpy/numpy/pull/26842))

##### New `PyUFuncObject` field `process_core_dims_func`

The field `process_core_dims_func` was added to the structure
`PyUFuncObject`. For generalized ufuncs, this field can be set to a
function of type `PyUFunc_ProcessCoreDimsFunc` that will be called when
the ufunc is called. It allows the ufunc author to check that core
dimensions satisfy additional constraints, and to set output core
dimension sizes if they have not been provided.

([gh-26908](https://togithub.com/numpy/numpy/pull/26908))

#### New Features

##### Preliminary Support for Free-Threaded CPython 3.13

CPython 3.13 will be available as an experimental free-threaded build.
See <https://py-free-threading.github.io>, [PEP 703](https://peps.python.org/pep-0703/) and the
[CPython 3.13 release notes](https://docs.python.org/3.13/whatsnew/3.13.html#free-threaded-cpython) for more detail about free-threaded Python.

NumPy 2.1 has preliminary support for the free-threaded build of CPython
3.13. This support was enabled by fixing a number of C thread-safety
issues in NumPy. Before NumPy 2.1, NumPy used a large number of C global
static variables to store runtime caches and other state. We have either
refactored to avoid the need for global state, converted the global
state to thread-local state, or added locking.

Support for free-threaded Python does not mean that NumPy is thread
safe. Read-only shared access to ndarray should be safe. NumPy exposes
shared mutable state and we have not added any locking to the array
object itself to serialize access to shared state. Care must be taken in
user code to avoid races if you would like to mutate the same array in
multiple threads. It is certainly possible to crash NumPy by mutating an
array simultaneously in multiple threads, for example by calling a ufunc
and the `resize` method simultaneously. For now our guidance is:
"don't do that". In the future we would like to provide stronger
guarantees.

Object arrays in particular need special care, since the GIL previously
provided locking for object array access and no longer does. See
[Issue #&#8203;27199](https://togithub.com/numpy/numpy/issues/27199) for more information about object
arrays in the free-threaded build.

If you are interested in free-threaded Python, for example because you
have a multiprocessing-based workflow that you are interested in running
with Python threads, we encourage testing and experimentation.

If you run into problems that you suspect are because of NumPy, please
[open an issue](https://togithub.com/numpy/numpy/issues/new/choose),
checking first if the bug also occurs in the "regular" non-free-threaded CPython 3.13
build. Many threading bugs can also occur in code that releases
the GIL; disabling the GIL only makes it easier to hit threading bugs.

([gh-26157](https://togithub.com/numpy/numpy/issues/26157#issuecomment-2233864940))

##### `f2py` can generate freethreading-compatible C extensions

Pass `--freethreading-compatible` to the f2py CLI tool to produce a C
extension marked as compatible with the free threading CPython
interpreter. Doing so prevents the interpreter from re-enabling the GIL
at runtime when it imports the C extension. Note that `f2py` does not
analyze fortran code for thread safety, so you must verify that the
wrapped fortran code is thread safe before marking the extension as
compatible.

([gh-26981](https://togithub.com/numpy/numpy/pull/26981))

-   `numpy.reshape` and `numpy.ndarray.reshape` now support `shape` and
    `copy` arguments.

    ([gh-26292](https://togithub.com/numpy/numpy/pull/26292))

-   NumPy now supports DLPack v1, support for older versions will be
    deprecated in the future.

    ([gh-26501](https://togithub.com/numpy/numpy/pull/26501))

-   `numpy.asanyarray` now supports `copy` and `device` arguments,
    matching `numpy.asarray`.

    ([gh-26580](https://togithub.com/numpy/numpy/pull/26580))

-   `numpy.printoptions`, `numpy.get_printoptions`, and
    `numpy.set_printoptions` now support a new option, `override_repr`,
    for defining custom `repr(array)` behavior.

    ([gh-26611](https://togithub.com/numpy/numpy/pull/26611))

-   `numpy.cumulative_sum` and `numpy.cumulative_prod` were added as
    Array API compatible alternatives for `numpy.cumsum` and
    `numpy.cumprod`. The new functions can include a fixed initial
    (zeros for `sum` and ones for `prod`) in the result.

    ([gh-26724](https://togithub.com/numpy/numpy/pull/26724))

-   `numpy.clip` now supports `max` and `min` keyword arguments which
    are meant to replace `a_min` and `a_max`. Also, for `np.clip(a)` or
    `np.clip(a, None, None)` a copy of the input array will be returned
    instead of raising an error.

    ([gh-26724](https://togithub.com/numpy/numpy/pull/26724))

-   `numpy.astype` now supports `device` argument.

    ([gh-26724](https://togithub.com/numpy/numpy/pull/26724))

#### Improvements

##### `histogram` auto-binning now returns bin sizes >=1 for integer input data

For integer input data, bin sizes smaller than 1 result in spurious
empty bins. This is now avoided when the number of bins is computed
using one of the algorithms provided by `histogram_bin_edges`.

([gh-12150](https://togithub.com/numpy/numpy/pull/12150))

##### `ndarray` shape-type parameter is now covariant and bound to `tuple[int, ...]`

Static typing for `ndarray` is a long-term effort that continues with
this change. It is a generic type with type parameters for the shape and
the data type. Previously, the shape type parameter could be any value.
This change restricts it to a tuple of ints, as one would expect from
using `ndarray.shape`. Further, the shape-type parameter has been
changed from invariant to covariant. This change also applies to the
subtypes of `ndarray`, e.g. `numpy.ma.MaskedArray`. See the
[typing docs](https://typing.readthedocs.io/en/latest/reference/generics.html#variance-of-generic-types)
for more information.

([gh-26081](https://togithub.com/numpy/numpy/pull/26081))

##### `np.quantile` with method `closest_observation` chooses nearest even order statistic

This changes the definition of nearest for border cases from the nearest
odd order statistic to nearest even order statistic. The numpy
implementation now matches other reference implementations.

([gh-26656](https://togithub.com/numpy/numpy/pull/26656))

##### `lapack_lite` is now thread safe

NumPy provides a minimal low-performance version of LAPACK named
`lapack_lite` that can be used if no BLAS/LAPACK system is detected at
build time.

Until now, `lapack_lite` was not thread safe. Single-threaded use cases
did not hit any issues, but running linear algebra operations in
multiple threads could lead to errors, incorrect results, or segfaults
due to data races.

We have added a global lock, serializing access to `lapack_lite` in
multiple threads.

([gh-26750](https://togithub.com/numpy/numpy/pull/26750))

##### The `numpy.printoptions` context manager is now thread and async-safe

In prior versions of NumPy, the printoptions were defined using a
combination of Python and C global variables. We have refactored so the
state is stored in a python `ContextVar`, making the context manager
thread and async-safe.

([gh-26846](https://togithub.com/numpy/numpy/pull/26846))

##### Type hinting `numpy.polynomial`

Starting from the 2.1 release, PEP 484 type annotations have been
included for the functions and convenience classes in `numpy.polynomial`
and its sub-packages.

([gh-26897](https://togithub.com/numpy/numpy/pull/26897))

##### Improved `numpy.dtypes` type hints

The type annotations for `numpy.dtypes` are now a better reflection of
the runtime: The `numpy.dtype` type-aliases have been replaced with
specialized `dtype` *subtypes*, and the previously missing annotations
for `numpy.dtypes.StringDType` have been added.

([gh-27008](https://togithub.com/numpy/numpy/pull/27008))

#### Performance improvements and changes

-   `numpy.save` now uses pickle protocol version 4 for saving arrays
    with object dtype, which allows for pickle objects larger than 4GB
    and improves saving speed by about 5% for large arrays.

    ([gh-26388](https://togithub.com/numpy/numpy/pull/26388))

-   OpenBLAS on x86\_64 and i686 is built with fewer kernels. Based on
    benchmarking, there are 5 clusters of performance around these
    kernels: `PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX`.

    ([gh-27147](https://togithub.com/numpy/numpy/pull/27147))

-   OpenBLAS on windows is linked without quadmath, simplifying
    licensing

    ([gh-27147](https://togithub.com/numpy/numpy/pull/27147))

-   Due to a regression in OpenBLAS on windows, the performance
    improvements when using multiple threads for OpenBLAS 0.3.26 were
    reverted.

    ([gh-27147](https://togithub.com/numpy/numpy/pull/27147))

##### `ma.cov` and `ma.corrcoef` are now significantly faster

The private function has been refactored along with `ma.cov` and
`ma.corrcoef`. They are now significantly faster, particularly on large,
masked arrays.

([gh-26285](https://togithub.com/numpy/numpy/pull/26285))

#### Changes

-   As `numpy.vecdot` is now a ufunc it has a less precise signature.
    This is due to the limitations of ufunc's typing stub.

    ([gh-26313](https://togithub.com/numpy/numpy/pull/26313))

-   `numpy.floor`, `numpy.ceil`, and `numpy.trunc` now won't perform
    casting to a floating dtype for integer and boolean dtype input
    arrays.

    ([gh-26766](https://togithub.com/numpy/numpy/pull/26766))

##### `ma.corrcoef` may return a slightly different result

A pairwise observation approach is currently used in `ma.corrcoef` to
calculate the standard deviations for each pair of variables. This has
been changed as it is being used to normalise the covariance, estimated
using `ma.cov`, which does not consider the observations for each
variable in a pairwise manner, rendering it unnecessary. The
normalisation has been replaced by the more appropriate standard
deviation for each variable, which significantly reduces the wall time,
but will return slightly different estimates of the correlation
coefficients in cases where the observations between a pair of variables
are not aligned. However, it will return the same estimates in all other
cases, including returning the same correlation matrix as `corrcoef`
when using a masked array with no masked values.

([gh-26285](https://togithub.com/numpy/numpy/pull/26285))

##### Cast-safety fixes in `copyto` and `full`

`copyto` now uses NEP 50 correctly and applies this to its cast safety.
Python integer to NumPy integer casts and Python float to NumPy float
casts are now considered "safe" even if assignment may fail or
precision may be lost. This means the following examples change
slightly:

-   `np.copyto(int8_arr, 1000)` previously performed an unsafe/same-kind cast
    of the Python integer. It will now always raise, to achieve an
    unsafe cast you must pass an array or NumPy scalar.

-   `np.copyto(uint8_arr, 1000, casting="safe")` will raise an
    OverflowError rather than a TypeError due to same-kind casting.

-   `np.copyto(float32_arr, 1e300, casting="safe")` will overflow to
    `inf` (float32 cannot hold `1e300`) rather raising a TypeError.

Further, only the dtype is used when assigning NumPy scalars (or 0-d
arrays), meaning that the following behaves differently:

-   `np.copyto(float32_arr, np.float64(3.0), casting="safe")` raises.
-   `np.coptyo(int8_arr, np.int64(100), casting="safe")` raises.
    Previously, NumPy checked whether the 100 fits the `int8_arr`.

This aligns `copyto`, `full`, and `full_like` with the correct NumPy 2
behavior.

([gh-27091](https://togithub.com/numpy/numpy/pull/27091))

#### Checksums

##### MD5

    2323404663c0b2a86362319d7526eb80  numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
    3d4bca8d05eb1eba859e77ff8f91d843  numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
    9bd065f147dbf3f2d59ab57bff4f0074  numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl
    47d177533511901cd6bf77f72cbd3d6e  numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl
    530b7f38f64216f1322b39bc50f36c0c  numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    d2a3161a10811a675a29a63e25636d83  numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    4e9fb20b080f7931791da71708740b83  numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
    776eb610795d63217980a36eb23bf268  numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl
    8328b9e2afa4013aaf3e4963349445e2  numpy-2.1.0-cp310-cp310-win32.whl
    e3184b9979192c8d7b80deb2af16d6bb  numpy-2.1.0-cp310-cp310-win_amd64.whl
    54571aef9d9081e35bebef10f8d64e75  numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
    841dac2386c1da870a384b64cd31e32b  numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl
    0fe85239ebe336d2baaddcb0ed001dc7  numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl
    772a55a6c46f7b643af4640c2ca68d70  numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    64fefbc527229521cf2a516b778b8aa7  numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    5cdb3d262d8c513b0f08cd1b6ba48512  numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
    16140f5de42e87d84b80c350fd014893  numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl
    5e37df534d167af1966e099e0be9d94a  numpy-2.1.0-cp311-cp311-win32.whl
    ee443aa000621bed8bb2d6a94afd89b5  numpy-2.1.0-cp311-cp311-win_amd64.whl
    d8c911fc34a8dad4ed821036563b5758  numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl
    ec25d637c43ae8229052e62a4f40f2d2  numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
    67c7abca3d0339f17a8543abc0e7bf11  numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl
    0d36ec6a64cbef1d727eb608a236ad2c  numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl
    0eedab574a3b75ec237be910e9717153  numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    73dd2a5d0c85007bf5fdb4b7f66b8451  numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    94fb0cfbc647a34177c766570fad752b  numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
    de3efbbcd792a1f82d0e3e175ea02ca9  numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl
    9a63ebbfb3c4c6eba77ef0723a5dc86f  numpy-2.1.0-cp312-cp312-win32.whl
    c68bc27545ac68c54935a1d0278b18f6  numpy-2.1.0-cp312-cp312-win_amd64.whl
    f2795bb974af42e2723e32af9b14b66d  numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl
    2f7426b06a332ea7a20159f3c06d67d1  numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl
    fcef18e031fc8588227023bac55d9636  numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl
    cbb5ca4dc798ea397344c93a2549e73e  numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl
    573213bea3a67452a310355adc7c6aa1  numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    24f8c8a1235aeaedb8f154a984b3c78b  numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    b2ef762c0ebb02b58a339c1e38f032b2  numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl
    50e68cbfeb330aff607969c30251632d  numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl
    21228342cd1b4ff8c7ec1aea45c07186  numpy-2.1.0-cp313-cp313-win32.whl
    8d234b05f0c4faf7b9884a1f0f19c23d  numpy-2.1.0-cp313-cp313-win_amd64.whl
    e0c19ca29fa8e8e051107cd36b978f05  numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl
    98756f2ff9adc2cf374c28db77e28312  numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl
    69786349d1f392dc6ac3fe00271e941b  numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl
    4d1481bcb17aaebfc785e005455da223  numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl
    1d403eda14369ab023d5ae1c15dce25c  numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    cdeece2cd6508eeee5a4c3150b58ec59  numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    85347b754d8324c508f7aeb7de243feb  numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl
    6ff18d36d0940de6c1cc962a61b44bd5  numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl
    2f7d60a99c236a8f909bd86b8ed1e3a4  numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
    dc610133d9f09e5b3d396859e75c5593  numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
    6a2883ee5b16ab5c031037cc63c20e9b  numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    c914ba2fe3fcdcd04c8fe6a8374ea5fb  numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl
    4cb2230ffa1cc41329ae29bd69ee08de  numpy-2.1.0.tar.gz

##### SHA256

    6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8  numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
    0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911  numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
    30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673  numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl
    899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b  numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl
    08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b  numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f  numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84  numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
    10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33  numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl
    f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211  numpy-2.1.0-cp310-cp310-win32.whl
    f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa  numpy-2.1.0-cp310-cp310-win_amd64.whl
    76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce  numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
    f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1  numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl
    9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e  numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl
    54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb  numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3  numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36  numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
    d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd  numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl
    ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e  numpy-2.1.0-cp311-cp311-win32.whl
    0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b  numpy-2.1.0-cp311-cp311-win_amd64.whl
    fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736  numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl
    f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529  numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
    dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1  numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl
    b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8  numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl
    a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745  numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111  numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0  numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
    c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574  numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl
    c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02  numpy-2.1.0-cp312-cp312-win32.whl
    a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc  numpy-2.1.0-cp312-cp312-win_amd64.whl
    8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667  numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl
    442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e  numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl
    848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33  numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl
    54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b  numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl
    652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195  numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977  numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1  numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl
    44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62  numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl
    ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324  numpy-2.1.0-cp313-cp313-win32.whl
    de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5  numpy-2.1.0-cp313-cp313-win_amd64.whl
    343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06  numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl
    f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883  numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl
    5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300  numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl
    1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d  numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl
    3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd  numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6  numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a  numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl
    624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb  numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl
    15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b  numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
    e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d  numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
    f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575  numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2  numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl
    7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2  numpy-2.1.0.tar.gz

### [`v2.0.2`](https://togithub.com/numpy/numpy/releases/tag/v2.0.2): NumPy 2.0.2 release (Aug 26, 2024)

[Compare Source](https://togithub.com/numpy/numpy/compare/v2.0.1...v2.0.2)

### NumPy 2.0.2 Release Notes

NumPy 2.0.2 is a maintenance release that fixes bugs and regressions
discovered after the 2.0.1 release.

The Python versions supported by this release are 3.9-3.12.

#### Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

-   Bruno Oliveira +
-   Charles Harris
-   Chris Sidebottom
-   Christian Heimes +
-   Christopher Sidebottom
-   Mateusz Sokół
-   Matti Picus
-   Nathan Goldbaum
-   Pieter Eendebak
-   Raghuveer Devulapalli
-   Ralf Gommers
-   Sebastian Berg
-   Yair Chuchem +

#### Pull requests merged

A total of 19 pull requests were merged for this release.

-   [#&#8203;27000](https://togithub.com/numpy/numpy/pull/27000): REL: Prepare for the NumPy 2.0.1 release \[wheel build]
-   [#&#8203;27001](https://togithub.com/numpy/numpy/pull/27001): MAINT: prepare 2.0.x for further development
-   [#&#8203;27021](https://togithub.com/numpy/numpy/pull/27021): BUG: cfuncs.py: fix crash when sys.stderr is not available
-   [#&#8203;27022](https://togithub.com/numpy/numpy/pull/27022): DOC: Fix migration note for `alltrue` and `sometrue`
-   [#&#8203;27061](https://togithub.com/numpy/numpy/pull/27061): BUG: use proper input and output descriptor in array_assign_subscript...
-   [#&#8203;27073](https://togithub.com/numpy/numpy/pull/27073): BUG: Mirror VQSORT_ENABLED logic in Quicksort
-   [#&#8203;27074](https://togithub.com/numpy/numpy/pull/27074): BUG: Bump Highway to latest master
-   [#&#8203;27077](https://togithub.com/numpy/numpy/pull/27077): BUG: Off by one in memory overlap check
-   [#&#8203;27122](https://togithub.com/numpy/numpy/pull/27122): BUG: Use the new `npyv_loadable_stride_` functions for ldexp and...
-   [#&#8203;27126](https://togithub.com/numpy/numpy/pull/27126): BUG: Bump Highway to latest
-   [#&#8203;27128](https://togithub.com/numpy/numpy/pull/27128): BUG: add missing error handling in public_dtype_api.c
-   [#&#8203;27129](https://togithub.com/numpy/numpy/pull/27129): BUG: fix another cast setup in array_assign_subscript
-   [#&#8203;27130](https://togithub.com/numpy/numpy/pull/27130): BUG: Fix building NumPy in FIPS mode
-   [#&#8203;27131](https://togithub.com/numpy/numpy/pull/27131): BLD: update vendored Meson for cross-compilation patches
-   [#&#8203;27146](https://togithub.com/numpy/numpy/pull/27146): MAINT: Scipy openblas 0.3.27.44.4
-   [#&#8203;27151](https://togithub.com/numpy/numpy/pull/27151): BUG: Do not accidentally store dtype metadata in `np.save`
-   [#&#8203;27195](https://togithub.com/numpy/numpy/pull/27195): REV: Revert undef I and document it
-   [#&#8203;27213](https://togithub.com/numpy/numpy/pull/27213): BUG: Fix NPY_RAVEL_AXIS on backwards compatible NumPy 2 builds
-   [#&#8203;27279](https://togithub.com/numpy/numpy/pull/27279): BUG: Fix array_equal for numeric and non-numeric scalar types

#### Checksums

##### MD5

    ae4bc199b56d20305984b7465d6fbdf1  numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
    ecce0a682c2ccaaa14500b87ffb69f63  numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
    a94f34bec8a62dab95ce9883a87a82a6  numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl
    a0a26dadf73264d31b7a6952b816d7c8  numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl
    972f4366651a1a2ef00f630595104d15  numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    6cffef937fe67a3879abefd3d2c40fb8  numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    3717a5deda20f465720717a1a7a293a6  numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
    e31136ecc97bb76b3cb7e86bfc9471ac  numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl
    9703a02ca6b63ca53f83660d089f4294  numpy-2.0.2-cp310-cp310-win32.whl
    12c097ef2c7492282a5514b5c4b68784  numpy-2.0.2-cp310-cp310-win_amd64.whl
    f11d11bfa3aaf371d2e7fa0160e3208b  numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl
    86fc67666fc6e27740fde7dacb19c484  numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl
    5fd12e0dd7162ea9599c49bbb6e6730e  numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl
    a40f473db729ea10ae401ce71899120a  numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl
    36ea96e0be954896597543d726157eda  numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    cfa726b6d5445687020fc4d4f7191e42  numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    dfb9a7b7fe218e931b0dfb885a8250d6  numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
    d8bf100186e6cd1b2f27eb617ba9e581  numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl
    4fe937eba0fc4d28a65c0ba571c809fc  numpy-2.0.2-cp311-cp311-win32.whl
    a9a0f8e1bc4d825272514896e3b17f15  numpy-2.0.2-cp311-cp311-win_amd64.whl
    5ef80ec3b2db487d89c590eb301a7aa4  numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl
    1bb398d93422bb9baf63c958ed1aa492  numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl
    cc8d990a1ad3f4d66d0143ea709ccc99  numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl
    4fee57e854bc3e9a267e865740438d53  numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl
    c2c18eef5118607c0b023f6267ee9774  numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    2928ed26d7153a488bfb126424d86c8f  numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    e32167073981b0a1a419aaaec741773e  numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl
    80a10803a3122472c1bf6c4617d0d1c5  numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl
    39724e27a003b6ce9b1bcbf251e50b4b  numpy-2.0.2-cp312-cp312-win32.whl
    8319d0b3d23285d4698cbece73b23fde  numpy-2.0.2-cp312-cp312-win_amd64.whl
    da0f655880bbcb53094816b77cd493d1  numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl
    47347c028f6ccf47d6a22724111fc96f  numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl
    26a5c8dec993258522fcef84ef0c040e  numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl
    fe447af86983ef2262e605a941bd46af  numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl
    96477b8563e6d4e2db710f4915a4c5e0  numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    4e8255cdff60de62944aed1f4235ff68  numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    05d8465b87ca983eee044b66bc725391  numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
    dcf448ef80720bae7de6724f92499754  numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl
    71557f67f24d39db709cc4ccb85ae5b5  numpy-2.0.2-cp39-cp39-win32.whl
    f5dc31c5530037c4d1d990696b1d041c  numpy-2.0.2-cp39-cp39-win_amd64.whl
    a8f814da1a4509724346c14cd838b5dc  numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
    918f072481d014229dd5f0f5ba75306f  numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
    fcbe2e38506fbbbeda509a89063563d3  numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    b99eff795ca26f8a513aace76a45a356  numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl
    d517a3be706295c4a4c8f75f5ee7b261  numpy-2.0.2.tar.gz

##### SHA256

    51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece  numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
    f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04  numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
    8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66  numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl
    becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b  numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl
    2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd  numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318  numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8  numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
    d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326  numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl
    984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97  numpy-2.0.2-cp310-cp310-win32.whl
    c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131  numpy-2.0.2-cp310-cp310-win_amd64.whl
    49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448  numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl
    11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195  numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl
    807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57  numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl
    8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a  numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl
    a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669  numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951  numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9  numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
    c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15  numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl
    a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4  numpy-2.0.2-cp311-cp311-win32.whl
    286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc  numpy-2.0.2-cp311-cp311-win_amd64.whl
    df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b  numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl
    8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e  numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl
    9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c  numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl
    a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c  numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl
    c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692  numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a  numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c  numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl
    ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded  numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl
    671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5  numpy-2.0.2-cp312-cp312-win32.whl
    cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a  numpy-2.0.2-cp312-cp312-win_amd64.whl
    9059e10581ce4093f735ed23f3b9d283b9d517ff46009ddd485f1747eb22653c  numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl
    423e89b23490805d2a5a96fe40ec507407b8ee786d66f7328be214f9679df6dd  numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl
    2b2955fa6f11907cf7a70dab0d0755159bca87755e831e47932367fc8f2f2d0b  numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl
    97032a27bd9d8988b9a97a8c4d2c9f2c15a81f61e2f21404d7e8ef00cb5be729  numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl
    1e795a8be3ddbac43274f18588329c72939870a16cae810c2b73461c40718ab1  numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    f26b258c385842546006213344c50655ff1555a9338e2e5e02a0756dc3e803dd  numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    5fec9451a7789926bcf7c2b8d187292c9f93ea30284802a0ab3f5be8ab36865d  numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
    9189427407d88ff25ecf8f12469d4d39d35bee1db5d39fc5c168c6f088a6956d  numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl
    905d16e0c60200656500c95b6b8dca5d109e23cb24abc701d41c02d74c6b3afa  numpy-2.0.2-cp39-cp39-win32.whl
    a3f4ab0caa7f053f6797fcd4e1e25caee367db3112ef2b6ef82d749530768c73  numpy-2.0.2-cp39-cp39-win_amd64.whl
    7f0a0c6f12e07fa94133c8a67404322845220c06a9e80e85999afe727f7438b8  numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
    312950fdd060354350ed123c0e25a71327d3711584beaef30cdaa93320c392d4  numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
    26df23238872200f63518dd2aa984cfca675d82469535dc7162dc2ee52d9dd5c  numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
    a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385  numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl
    883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78  numpy-2.0.2.tar.gz

</details>

---

### Configuration

📅 **Schedule**: Branch creation - "before 4am on the first day of the month" (UTC), Automerge - At any time (no schedule defined).

🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied.

♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 **Ignore**: Close this PR and you won't be reminded about this update again.

---

 - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box

---

This PR has been generated by [Renovate Bot](https://togithub.com/renovatebot/renovate).
<!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzNy40NDAuNyIsInVwZGF0ZWRJblZlciI6IjM3LjQ0MC43IiwidGFyZ2V0QnJhbmNoIjoibWFpbiIsImxhYmVscyI6WyJhdXRvbWVyZ2UiXX0=-->
  • Loading branch information
cq-bot authored Sep 1, 2024
1 parent 20a219c commit 23f58ed
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
"iniconfig==2.0.0",
"Jinja2==3.1.4",
"MarkupSafe==2.1.5",
"numpy==2.0.1",
"numpy==2.1.0",
"packaging==24.1",
"pandas==2.2.2",
"pluggy==1.5.0",
Expand Down

0 comments on commit 23f58ed

Please sign in to comment.