Skip to content

coleifer/huey

This branch is 1 commit ahead of, 2 commits behind master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

c3d48fb · Dec 18, 2024
Oct 15, 2024
Dec 15, 2024
Jun 5, 2024
Dec 18, 2024
Feb 28, 2018
Nov 15, 2023
Sep 25, 2024
Mar 4, 2017
Apr 6, 2023
Oct 13, 2023
Apr 1, 2019
Feb 9, 2023
Jun 30, 2020
Jun 7, 2024

Repository files navigation

http://media.charlesleifer.com/blog/photos/huey2-logo.png

a lightweight alternative.

huey is:

huey supports:

  • multi-process, multi-thread or greenlet task execution models
  • schedule tasks to execute at a given time, or after a given delay
  • schedule recurring tasks, like a crontab
  • automatically retry tasks that fail
  • task prioritization
  • task result storage
  • task expiration
  • task locking
  • task pipelines and chains

http://i.imgur.com/2EpRs.jpg

At a glance

from huey import RedisHuey, crontab

huey = RedisHuey('my-app', host='redis.myapp.com')

@huey.task()
def add_numbers(a, b):
    return a + b

@huey.task(retries=2, retry_delay=60)
def flaky_task(url):
    # This task might fail, in which case it will be retried up to 2 times
    # with a delay of 60s between retries.
    return this_might_fail(url)

@huey.periodic_task(crontab(minute='0', hour='3'))
def nightly_backup():
    sync_all_data()

Calling a task-decorated function will enqueue the function call for execution by the consumer. A special result handle is returned immediately, which can be used to fetch the result once the task is finished:

>>> from demo import add_numbers
>>> res = add_numbers(1, 2)
>>> res
<Result: task 6b6f36fc-da0d-4069-b46c-c0d4ccff1df6>

>>> res()
3

Tasks can be scheduled to run in the future:

>>> res = add_numbers.schedule((2, 3), delay=10)  # Will be run in ~10s.
>>> res(blocking=True)  # Will block until task finishes, in ~10s.
5

For much more, check out the guide or take a look at the example code.

Running the consumer

Run the consumer with four worker processes:

$ huey_consumer.py my_app.huey -k process -w 4

To run the consumer with a single worker thread (default):

$ huey_consumer.py my_app.huey

If your work-loads are mostly IO-bound, you can run the consumer with threads or greenlets instead. Because greenlets are so lightweight, you can run quite a few of them efficiently:

$ huey_consumer.py my_app.huey -k greenlet -w 32

Storage

Huey's design and feature-set were informed by the capabilities of the Redis database. Redis is a fantastic fit for a lightweight task queueing library like Huey: it's self-contained, versatile, and can be a multi-purpose solution for other web-application tasks like caching, event publishing, analytics, rate-limiting, and more.

Although Huey was designed with Redis in mind, the storage system implements a simple API and many other tools could be used instead of Redis if that's your preference.

Huey comes with builtin support for Redis, Sqlite and in-memory storage.

Documentation

See Huey documentation.

Project page

See source code and issue tracker on Github.

Huey is named in honor of my cat:

http://m.charlesleifer.com/t/800x-/blog/photos/p1473037658.76.jpg?key=mD9_qMaKBAuGPi95KzXYqg