-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* resolving conflict * Add 'windowed-top-N/flinksql' module with dependencies This commit introduces the 'windowed-top-N/flinksql' module, which includes its build.gradle with appropriate Java version and test implementation dependencies. A SQL template for creating movie views is also included. Lastly, the 'windowed-top-N:flinksql' module was added to general settings.gradle. * Apply suggestions from code review Co-authored-by: Dave Troiano <[email protected]> --------- Co-authored-by: Dave Troiano <[email protected]>
- Loading branch information
1 parent
dc3de57
commit 2e56b1c
Showing
9 changed files
with
396 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
# Windowed Top-N in Flink SQL | ||
|
||
The Top-N functionality in Flink SQL is excellent for tracking the top (or bottom) records in an event stream. But what if you wanted the top records within distinct time ranges? For example, consider you work for a video streaming service like Netflix or Hulu. You need to see the top genre of movies subscribers watch by the hour to make more accurate recommendations. To do this ranking by hour, you can use a [Windowed Top-N query](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/window-topn/) and [windowing table-valued functions](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/window-tvf/). | ||
|
||
## Setup | ||
|
||
Let's assume the following DDL for our base `movie_views` table: | ||
|
||
```sql | ||
TABLE movie_views ( | ||
id INT, | ||
title STRING, | ||
genre STRING, | ||
movie_start TIMESTAMP(3), | ||
WATERMARK FOR movie_start as movie_start | ||
) | ||
``` | ||
|
||
## Compute the Windowed Top-N | ||
|
||
Given the `movie_views` table definition above, we can retrieve the top genre by hour with this query. | ||
|
||
```sql | ||
SELECT * | ||
FROM ( | ||
SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY category_count DESC ) as hour_rank | ||
FROM ( | ||
SELECT window_start, window_end, genre, COUNT(*) as category_count | ||
FROM TABLE(TUMBLE(TABLE movie_views, DESCRIPTOR(movie_start), INTERVAL '1' HOUR)) | ||
GROUP BY window_start, window_end, genre | ||
) | ||
) WHERE hour_rank = 1 ; | ||
``` | ||
|
||
There are a few moving parts to this query, so let's break it down starting from the inside and working our way out. | ||
|
||
The innermost query is a [TUMBLE windowing tvf](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/window-tvf/#tumble) that selects the window start, window end, genre and a count of genre for each movie started in a 1-hour tumbling window. | ||
|
||
```sql | ||
SELECT window_start, window_end, genre, COUNT(*) as category_count | ||
FROM TABLE(TUMBLE(TABLE movie_views, DESCRIPTOR(movie_start), INTERVAL '1' HOUR)) | ||
GROUP BY window_start, window_end, genre | ||
``` | ||
|
||
Working our way out to the next query, it selects all results from the tumbling window query. It performs an [over aggregation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/over-agg/) partitioning results by the window start and window end and ordering them (descending) by the count. This query gives us the rank of movies by genre started each hour. | ||
|
||
```sql | ||
SELECT *, SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY category_count DESC ) | ||
FROM ( | ||
.... | ||
) | ||
``` | ||
|
||
The outermost query selects all results from the `OVER` aggregation where the `hour_rank` column equals 1, indicating it was the top genre of the movie that started in that hour. | ||
|
||
```sql | ||
SELECT * | ||
FROM ( .... ) | ||
WHERE hour_rank = 1 ; | ||
``` | ||
|
||
Here are some essential concepts used to calculate the windowed Top-N results | ||
|
||
1. `ROW_NUMBER()`, starting at one, assigns a unique, sequential number to each row representing its place in the result set, which we've labeled `hour_rank.` | ||
2. `PARTITION BY` specifies how to partition the data. Using a partition of window starting and ending, you'll rank the movie genres in each 1-hour tumbling window. | ||
3. `ORDER BY` orders results by the number calculated by the `ROW_NUMBER()` function which is its position in the window. | ||
|
||
## Running the example | ||
|
||
You can run the example backing this tutorial in one of three ways: a Flink Table API-based JUnit test, locally with the Flink SQL Client | ||
against Flink and Kafka running in Docker, or with Confluent Cloud. | ||
|
||
<details> | ||
<summary>Flink Table API-based test</summary> | ||
|
||
#### Prerequisites | ||
|
||
* Java 17, e.g., follow the OpenJDK installation instructions [here](https://openjdk.org/install/) if you don't have Java. | ||
* Docker running via [Docker Desktop](https://docs.docker.com/desktop/) or [Docker Engine](https://docs.docker.com/engine/install/) | ||
|
||
#### Run the test | ||
|
||
Run the following command to execute [FlinkSqlTopNTest#testTopN](src/test/java/io/confluent/developer/FlinkSqlTopNTest.java): | ||
|
||
```plaintext | ||
./gradlew clean :windowed-top-N:flinksql:test | ||
``` | ||
|
||
The test starts Kafka and Schema Registry with [Testcontainers](https://testcontainers.com/), runs the Flink SQL commands | ||
above against a local Flink `StreamExecutionEnvironment`, and ensures that the aggregation results are what we expect. | ||
</details> | ||
|
||
<details> | ||
<summary>Flink SQL Client CLI</summary> | ||
|
||
#### Prerequisites | ||
|
||
* Docker running via [Docker Desktop](https://docs.docker.com/desktop/) or [Docker Engine](https://docs.docker.com/engine/install/) | ||
* [Docker Compose](https://docs.docker.com/compose/install/). Ensure that the command `docker compose version` succeeds. | ||
|
||
#### Run the commands | ||
|
||
First, start Flink and Kafka: | ||
|
||
```shell | ||
docker compose -f ./docker/docker-compose-flinksql.yml up -d | ||
``` | ||
|
||
Next, open the Flink SQL Client CLI: | ||
|
||
```shell | ||
docker exec -it flink-sql-client sql-client.sh | ||
``` | ||
|
||
Finally, run following SQL statements to create the `movie_views` table backed by Kafka running in Docker, populate it with | ||
test data, and run the Top-N query. | ||
|
||
```sql | ||
CREATE TABLE movie_views ( | ||
id INT, | ||
title STRING, | ||
genre STRING, | ||
movie_start TIMESTAMP(3), | ||
WATERMARK FOR movie_start as movie_start | ||
) WITH ( | ||
'connector' = 'kafka', | ||
'topic' = 'movie_views', | ||
'properties.bootstrap.servers' = 'broker:9092', | ||
'scan.startup.mode' = 'earliest-offset', | ||
'key.format' = 'raw', | ||
'key.fields' = 'id', | ||
'value.format' = 'json', | ||
'value.fields-include' = 'EXCEPT_KEY' | ||
); | ||
|
||
``` | ||
|
||
```sql | ||
INSERT INTO movie_views (id, title, genre, movie_start) | ||
VALUES (123, 'The Dark Knight', 'Action', TO_TIMESTAMP('2024-04-23 19:04:00')), | ||
(456, 'Avengers: Endgame', 'Action', TO_TIMESTAMP('2024-04-23 22:01:00')), | ||
(789, 'Inception', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:24:00')), | ||
(147, 'Joker', 'Drama', TO_TIMESTAMP('2024-04-23 22:56:00')), | ||
(258, 'The Godfather', 'Crime', TO_TIMESTAMP('2024-04-23 19:13:00')), | ||
(369, 'Casablanca', 'Romance', TO_TIMESTAMP('2024-04-23 20:26:00')), | ||
(321, 'The Shawshank Redemption', 'Drama', TO_TIMESTAMP('2024-04-23 20:20:00')), | ||
(654, 'Forrest Gump', 'Drama', TO_TIMESTAMP('2024-04-23 21:54:00')), | ||
(987, 'Fight Club', 'Drama', TO_TIMESTAMP('2024-04-23 23:24:00')), | ||
(135, 'Pulp Fiction', 'Crime', TO_TIMESTAMP('2024-04-23 22:09:00')), | ||
(246, 'The Godfather: Part II', 'Crime', TO_TIMESTAMP('2024-04-23 19:28:00')), | ||
(357, 'The Departed', 'Crime', TO_TIMESTAMP('2024-04-23 23:11:00')), | ||
(842, 'Toy Story 3', 'Animation', TO_TIMESTAMP('2024-04-23 23:12:00')), | ||
(931, 'Up', 'Animation', TO_TIMESTAMP('2024-04-23 22:17:00')), | ||
(624, 'The Lion King', 'Animation', TO_TIMESTAMP('2024-04-23 22:28:00')), | ||
(512, 'Star Wars: The Force Awakens', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:42:00')), | ||
(678, 'The Matrix', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 19:25:00')), | ||
(753, 'Interstellar', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:14:00')), | ||
(834, 'Titanic', 'Romance', TO_TIMESTAMP('2024-04-23 20:25:00')), | ||
(675, 'Pride and Prejudice', 'Romance', TO_TIMESTAMP('2024-04-23 23:37:00')), | ||
(333, 'The Pride of Archbishop Carroll', 'History', TO_TIMESTAMP('2024-04-24 03:37:00')); | ||
``` | ||
|
||
```sql | ||
SELECT * | ||
FROM ( | ||
SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY category_count DESC ) as hour_rank | ||
FROM ( | ||
SELECT window_start, window_end, genre, COUNT(*) as category_count | ||
FROM TABLE(TUMBLE(TABLE movie_views, DESCRIPTOR(movie_start), INTERVAL '1' HOUR)) | ||
GROUP BY window_start, window_end, genre | ||
) | ||
) WHERE hour_rank = 1 ; | ||
``` | ||
|
||
The query output should look like this: | ||
|
||
```plaintext | ||
window_start window_end genre category_count hour_rank | ||
2024-04-23 19:00:00 2024-04-23 20:00:00 Crime 2 1 | ||
2024-04-23 20:00:00 2024-04-23 21:00:00 Sci-Fi 3 1 | ||
2024-04-23 21:00:00 2024-04-23 22:00:00 Drama 1 1 | ||
2024-04-23 22:00:00 2024-04-23 23:00:00 Animation 2 1 | ||
2024-04-23 23:00:00 2024-04-24 00:00:00 Animation 1 1 | ||
``` | ||
|
||
When you are finished, clean up the containers used for this tutorial by running: | ||
|
||
```shell | ||
docker compose -f ./docker/docker-compose-flinksql.yml down | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
<summary>Confluent Cloud</summary> | ||
|
||
#### Prerequisites | ||
|
||
* A [Confluent Cloud](https://confluent.cloud/signup) account | ||
* A Flink compute pool created in Confluent Cloud. Follow [this](https://docs.confluent.io/cloud/current/flink/get-started/quick-start-cloud-console.html) quick start to create one. | ||
|
||
#### Run the commands | ||
|
||
In the Confluent Cloud Console, navigate to your environment and then click the `Open SQL Workspace` button for the compute | ||
pool that you have created. | ||
|
||
Select the default catalog (Confluent Cloud environment) and database (Kafka cluster) to use with the dropdowns at the top right. | ||
|
||
Finally, run following SQL statements to create the `movie_views` table, populate it with test data, and run the windowed Top-N query. | ||
|
||
```sql | ||
CREATE TABLE movie_views ( | ||
id INT, | ||
title STRING, | ||
genre STRING, | ||
movie_start TIMESTAMP(3), | ||
WATERMARK FOR movie_start as movie_start | ||
) | ||
``` | ||
|
||
```sql | ||
INSERT INTO movie_views (id, title, genre, movie_start) | ||
VALUES (123, 'The Dark Knight', 'Action', TO_TIMESTAMP('2024-04-23 19:04:00')), | ||
(456, 'Avengers: Endgame', 'Action', TO_TIMESTAMP('2024-04-23 22:01:00')), | ||
(789, 'Inception', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:24:00')), | ||
(147, 'Joker', 'Drama', TO_TIMESTAMP('2024-04-23 22:56:00')), | ||
(258, 'The Godfather', 'Crime', TO_TIMESTAMP('2024-04-23 19:13:00')), | ||
(369, 'Casablanca', 'Romance', TO_TIMESTAMP('2024-04-23 20:26:00')), | ||
(321, 'The Shawshank Redemption', 'Drama', TO_TIMESTAMP('2024-04-23 20:20:00')), | ||
(654, 'Forrest Gump', 'Drama', TO_TIMESTAMP('2024-04-23 21:54:00')), | ||
(987, 'Fight Club', 'Drama', TO_TIMESTAMP('2024-04-23 23:24:00')), | ||
(135, 'Pulp Fiction', 'Crime', TO_TIMESTAMP('2024-04-23 22:09:00')), | ||
(246, 'The Godfather: Part II', 'Crime', TO_TIMESTAMP('2024-04-23 19:28:00')), | ||
(357, 'The Departed', 'Crime', TO_TIMESTAMP('2024-04-23 23:11:00')), | ||
(842, 'Toy Story 3', 'Animation', TO_TIMESTAMP('2024-04-23 23:12:00')), | ||
(931, 'Up', 'Animation', TO_TIMESTAMP('2024-04-23 22:17:00')), | ||
(624, 'The Lion King', 'Animation', TO_TIMESTAMP('2024-04-23 22:28:00')), | ||
(512, 'Star Wars: The Force Awakens', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:42:00')), | ||
(678, 'The Matrix', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 19:25:00')), | ||
(753, 'Interstellar', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:14:00')), | ||
(834, 'Titanic', 'Romance', TO_TIMESTAMP('2024-04-23 20:25:00')), | ||
(675, 'Pride and Prejudice', 'Romance', TO_TIMESTAMP('2024-04-23 23:37:00')), | ||
(333, 'The Pride of Archbishop Carroll', 'History', TO_TIMESTAMP('2024-04-24 03:37:00')); | ||
``` | ||
|
||
```sql | ||
SELECT * | ||
FROM ( | ||
SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY category_count DESC ) as hour_rank | ||
FROM ( | ||
SELECT window_start, window_end, genre, COUNT(*) as category_count | ||
FROM TABLE(TUMBLE(TABLE movie_views, DESCRIPTOR(movie_start), INTERVAL '1' HOUR)) | ||
GROUP BY window_start, window_end, genre | ||
) | ||
) WHERE hour_rank = 1 ; | ||
|
||
``` | ||
|
||
The query output should look like this: | ||
|
||
 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
buildscript { | ||
repositories { | ||
mavenCentral() | ||
} | ||
} | ||
|
||
plugins { | ||
id 'java' | ||
id 'idea' | ||
} | ||
|
||
java { | ||
sourceCompatibility = JavaVersion.VERSION_17 | ||
targetCompatibility = JavaVersion.VERSION_17 | ||
} | ||
version = "0.0.1" | ||
|
||
repositories { | ||
mavenCentral() | ||
} | ||
|
||
dependencies { | ||
testImplementation project(path: ':common', configuration: 'testArtifacts') | ||
testImplementation 'com.google.guava:guava:31.1-jre' | ||
testImplementation 'junit:junit:4.13.2' | ||
testImplementation 'org.testcontainers:testcontainers:1.19.3' | ||
testImplementation 'org.testcontainers:kafka:1.19.3' | ||
testImplementation 'org.apache.flink:flink-sql-connector-kafka:3.0.2-1.18' | ||
testImplementation 'org.apache.flink:flink-connector-base:1.18.0' | ||
testImplementation 'org.apache.flink:flink-sql-avro-confluent-registry:1.18.0' | ||
testImplementation 'org.apache.flink:flink-test-utils:1.18.0' | ||
testImplementation 'org.apache.flink:flink-test-utils-junit:1.18.0' | ||
testImplementation 'org.apache.flink:flink-table-api-java-bridge:1.18.0' | ||
testImplementation 'org.apache.flink:flink-table-planner_2.12:1.18.0' | ||
testImplementation 'org.apache.flink:flink-table-planner_2.12:1.18.0:tests' | ||
testImplementation 'org.apache.flink:flink-statebackend-rocksdb:1.18.0' | ||
testImplementation 'org.apache.flink:flink-json:1.19.0' | ||
|
||
} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
rootProject.name = 'windowed-top-N' | ||
include ':common' | ||
project(':common').projectDir = file('../../common') |
45 changes: 45 additions & 0 deletions
45
windowed-top-N/flinksql/src/test/java/io/confluent/developer/FlinkSqlWindowedTopNTest.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
package io.confluent.developer; | ||
|
||
|
||
import org.apache.flink.table.api.TableResult; | ||
import org.apache.flink.types.Row; | ||
import org.apache.flink.types.RowKind; | ||
import org.junit.Test; | ||
|
||
import java.util.ArrayList; | ||
import java.util.List; | ||
import java.util.Optional; | ||
|
||
import static io.confluent.developer.TestUtils.rowObjectsFromTableResult; | ||
import static io.confluent.developer.TestUtils.yyyy_MM_dd; | ||
import static org.junit.Assert.assertEquals; | ||
|
||
public class FlinkSqlWindowedTopNTest extends AbstractFlinkKafkaTest { | ||
|
||
@Test | ||
public void testWindowedTopN() throws Exception { | ||
|
||
streamTableEnv.getConfig().set("table.exec.source.idle-timeout", "5 ms"); | ||
streamTableEnv.executeSql(getResourceFileContents("create-movie-views.sql.template", | ||
Optional.of(kafkaPort), Optional.of(schemaRegistryPort))).await(); | ||
|
||
streamTableEnv.executeSql(getResourceFileContents("populate-movie-starts.sql")).await(); | ||
|
||
TableResult tableResult = streamTableEnv.executeSql(getResourceFileContents("query-movie-starts-for-top-categories-per-hour-dynamic.sql")); | ||
|
||
List<Row> actualResults = rowObjectsFromTableResult(tableResult); | ||
List<Row> expectedResults = getExpectedFinalUpdateRowObjects(); | ||
assertEquals(expectedResults, actualResults); | ||
} | ||
|
||
private List<Row> getExpectedFinalUpdateRowObjects() { | ||
List<Row> rowList = new ArrayList<>(); | ||
rowList.add(Row.ofKind(RowKind.INSERT, yyyy_MM_dd("2024-04-23 19:00:00"), yyyy_MM_dd("2024-04-23 20:00:00"), "Crime", 2L, 1L)); | ||
rowList.add(Row.ofKind(RowKind.INSERT, yyyy_MM_dd("2024-04-23 20:00:00"), yyyy_MM_dd("2024-04-23 21:00:00"), "Sci-Fi", 3L, 1L)); | ||
rowList.add(Row.ofKind(RowKind.INSERT, yyyy_MM_dd("2024-04-23 21:00:00"), yyyy_MM_dd("2024-04-23 22:00:00"), "Drama", 1L, 1L)); | ||
rowList.add(Row.ofKind(RowKind.INSERT, yyyy_MM_dd("2024-04-23 22:00:00"), yyyy_MM_dd("2024-04-23 23:00:00"), "Animation", 2L, 1L)); | ||
rowList.add(Row.ofKind(RowKind.INSERT, yyyy_MM_dd("2024-04-23 23:00:00"), yyyy_MM_dd("2024-04-24 00:00:00"), "Animation", 1L, 1L)); | ||
return rowList; | ||
} | ||
|
||
} |
17 changes: 17 additions & 0 deletions
17
windowed-top-N/flinksql/src/test/resources/create-movie-views.sql.template
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
CREATE TABLE movie_views ( | ||
id INT, | ||
title STRING, | ||
genre STRING, | ||
movie_start TIMESTAMP(3), | ||
WATERMARK FOR movie_start as movie_start | ||
) WITH ( | ||
'connector' = 'kafka', | ||
'topic' = 'movie_views', | ||
'properties.bootstrap.servers' = 'localhost:KAFKA_PORT', | ||
'scan.startup.mode' = 'earliest-offset', | ||
'scan.bounded.mode' = 'latest-offset', | ||
'key.format' = 'raw', | ||
'key.fields' = 'id', | ||
'value.format' = 'json', | ||
'value.fields-include' = 'EXCEPT_KEY' | ||
); |
21 changes: 21 additions & 0 deletions
21
windowed-top-N/flinksql/src/test/resources/populate-movie-starts.sql
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
INSERT INTO movie_views (id, title, genre, movie_start) | ||
VALUES (123, 'The Dark Knight', 'Action', TO_TIMESTAMP('2024-04-23 19:04:00')), | ||
(456, 'Avengers: Endgame', 'Action', TO_TIMESTAMP('2024-04-23 22:01:00')), | ||
(789, 'Inception', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:24:00')), | ||
(147, 'Joker', 'Drama', TO_TIMESTAMP('2024-04-23 22:56:00')), | ||
(258, 'The Godfather', 'Crime', TO_TIMESTAMP('2024-04-23 19:13:00')), | ||
(369, 'Casablanca', 'Romance', TO_TIMESTAMP('2024-04-23 20:26:00')), | ||
(321, 'The Shawshank Redemption', 'Drama', TO_TIMESTAMP('2024-04-23 20:20:00')), | ||
(654, 'Forrest Gump', 'Drama', TO_TIMESTAMP('2024-04-23 21:54:00')), | ||
(987, 'Fight Club', 'Drama', TO_TIMESTAMP('2024-04-23 23:24:00')), | ||
(135, 'Pulp Fiction', 'Crime', TO_TIMESTAMP('2024-04-23 22:09:00')), | ||
(246, 'The Godfather: Part II', 'Crime', TO_TIMESTAMP('2024-04-23 19:28:00')), | ||
(357, 'The Departed', 'Crime', TO_TIMESTAMP('2024-04-23 23:11:00')), | ||
(842, 'Toy Story 3', 'Animation', TO_TIMESTAMP('2024-04-23 23:12:00')), | ||
(931, 'Up', 'Animation', TO_TIMESTAMP('2024-04-23 22:17:00')), | ||
(624, 'The Lion King', 'Animation', TO_TIMESTAMP('2024-04-23 22:28:00')), | ||
(512, 'Star Wars: The Force Awakens', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:42:00')), | ||
(678, 'The Matrix', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 19:25:00')), | ||
(753, 'Interstellar', 'Sci-Fi', TO_TIMESTAMP('2024-04-23 20:14:00')), | ||
(834, 'Titanic', 'Romance', TO_TIMESTAMP('2024-04-23 20:25:00')), | ||
(675, 'Pride and Prejudice', 'Romance', TO_TIMESTAMP('2024-04-23 23:37:00')); |
Oops, something went wrong.