Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: normalize LLM parameter case and improve type handling #1830

Open
wants to merge 4 commits into
base: main
Choose a base branch
from

Conversation

devin-ai-integration[bot]
Copy link
Contributor

Fix LLM Parameter Case Normalization and Type Handling

Description

This PR addresses issue #1817 by implementing proper case normalization for the LLM parameter and improving type handling for all LLM-related parameters.

Changes

  • Add case normalization for 'LLM' parameter with deprecation warning
  • Add comprehensive type conversion for LLM parameters (int, float, bool, dict, list)
  • Add proper error handling for parameter conversion
  • Add tests to verify parameter handling

Testing

  • Added unit tests to verify:
    • Case-insensitive LLM parameter handling
    • Proper type conversion for different parameter types
    • Deprecation warning for uppercase 'LLM' usage
    • Environment variable handling

Implementation Details

  • Implemented in post_init_setup method of Agent class
  • Added type conversion for:
    • Integer parameters (timeout, max_tokens, etc.)
    • Float parameters (temperature, top_p, etc.)
    • Boolean parameters (logprobs)
    • Dictionary parameters (logit_bias)
    • List parameters (callbacks)
  • Added comprehensive error handling for each type conversion

Link to Devin run: https://app.devin.ai/sessions/ac96d6577a1c435c9d0e48744b2bb04f

Fixes #1817

- Add case normalization for 'LLM' parameter with deprecation warning
- Add comprehensive type conversion for LLM parameters
- Add proper error handling for parameter conversion
- Add tests to verify parameter handling

Fixes #1817

Co-Authored-By: Joe Moura <[email protected]>
Copy link
Contributor Author

🤖 Devin AI Engineer

I'll be helping with this pull request! Here's what you should know:

✅ I will automatically:

  • Address comments on this PR. Add "(aside)" to your comment to have me ignore it.
  • Look at CI failures and help fix them

⚙️ Control Options:

  • Disable automatic comment and CI monitoring

@joaomdmoura
Copy link
Collaborator

Disclaimer: This review was made by a crew of AI Agents.

Code Review Comment for PR #1830

Overview

This pull request implements significant enhancements to the handling of LLM parameters in the Agent class, with case normalization and improved type handling. The modifications primarily span two files: src/crewai/agent.py and tests/test_agent.py.

Improvements in agent.py

Positive Changes

  • Deprecation Warning: The introduction of a deprecation warning for uppercase ‘LLM’ parameters is a crucial step for future compatibility and user guidance.
  • Type Conversion: Comprehensive type conversion for LLM parameters ensures robustness in parameter handling.
  • Error Handling: The addition of try-catch blocks significantly increases the resilience of the code.
  • Type Annotations: The inclusion of type hints promotes better readability and maintainability.

Suggestions for Refinement

  1. Type Hints Consolidation:

    • Consider moving type imports to the top for clarity:
      from typing import Any, Dict, List, Union, Optional
      from langchain.llms.base import BaseLLM
  2. Parameter Validation Refactoring:

    • To enhance maintainability, refactor the parameter validation logic into dedicated methods:
      def _convert_parameter_type(self, key: str, value: Any) -> Optional[Any]:
          # Implement conversion logic
  3. Error Handling Enhancement:

    • More descriptive error messages should be incorporated:
      try:
          ...
      except Exception as e:
          logger.warning(f"Failed to convert parameter {key} with error: {str(e)}")
          continue
  4. Constants for Magic Strings:

    • Replace repeated string instances with class constants for clarity:
      class Agent(BaseAgent):
          INTEGER_PARAMS = {...}
          FLOAT_PARAMS = {...}

Insights from test_agent.py

Positive Aspects

  • The test coverage for new functionalities is commendable, and the test cases clearly delineate various scenarios.
  • The use of pytest fixtures is appropriate and effectively structured.

Recommendations for Tests

  1. Edge Case Tests:

    • Introduce tests for invalid parameter values to capture and validate edge cases:
      def test_agent_with_invalid_parameter_values():
          ...
  2. Parameterized Tests:

    • Implement parameterized tests to efficiently check multiple parameter conversions:
      @pytest.mark.parametrize("param,value,expected", [...])
      def test_parameter_type_conversion(param, value, expected):
          ...

General Recommendations

  • Enhance documentation with meaningful docstrings for new methods.
  • Consider implementing logging for enhanced debugging.
  • Add type hints consistently across all functions.
  • Create a separate configuration class for LLM parameters to promote better organization.
  • Implement validations for parameter ranges (e.g., ensuring temperature is between 0 and 1).

Security Considerations

  • Ensure proper sanitation of environment variables.
  • Add checks for the validity of JSON structure for dictionary parameters.
  • Establish maximum limits for numerical parameters to safeguard against potential abuse.

Conclusion

The changes introduced in PR #1830 significantly improve code quality through enhanced parameter handling and better maintainability. While the test coverage is strong, further improvements in edge case assessments would bolster the reliability of the code. Continuing to focus on clarity through refactoring and comprehensive documentation will benefit the ongoing development of the crewai codebase.


I appreciate the efforts put into this PR, and I look forward to seeing the improvements applied!

@bhancockio
Copy link
Collaborator

@joaomdmoura what was the initial purpose behind this PR?

The reason I ask is because I did a big refactor to simplify the LLM creation process and remove it from the agent.py file.

Now, we handle everything in a llm_utils.py file.

So, if this PR is fixing and actual issue, we will need to move the changes over to llm_utils.py.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Agent() Parameter Name Inconsistency (llm vs LLM)
3 participants