Skip to content

Reproducible scripts for manuscript: Prediction of functional markers of mass cytometry data via deep learning (2019). Solis-Lemus, C., X. Ma, M. Hostetter II, S. Kundu, P. Qiu, D. Pimentel-Alarcon

Notifications You must be signed in to change notification settings

crsl4/nn-flow-cytometry

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 

Repository files navigation

Prediction of functional markers of mass cytometry data via deep learning

All scripts for the analysis of the paper:

Prediction of functional markers of mass cytometry data via deep learning (2019). Solis-Lemus, C., X. Ma, M. Hostetter II, S. Kundu, P. Qiu, D. Pimentel-Alarcon.

Data

  • For individual 1, we have collected 100,000 cells, and for each cell we have 50 features: 18 surface markers (which identify the type of cell) and 32 functional markers (which identify the function of the cell)
  • We collect this information at baseline: matrix 100k by 50. Future: collect data at several experimental moments. So, if we have N experiments => N+1 matrices 100k by 50: B (baseline), E_1,...,E_N
  • We want to use the baseline information to predict the funcional markers from surface markers (which do not change with experimental settings). That is, use B to predict E_i with a neural network
  • The structure of the data is given by: each row is a cell. The meaning of the columns are as follows:

Surface markers:

  • 191-DNA
  • 193-DNA
  • 115-CD45
  • 139-CD45RA
  • 142-CD19
  • 144-CD11b
  • 145-CD4
  • 146-CD8
  • 148-CD34
  • 147-CD20
  • 158-CD33
  • 160-CD123
  • 167-CD38
  • 170-CD90
  • 110_114-CD3

Functional markers:

  • 141-pPLCgamma2
  • 150-pSTAT5
  • 152-Ki67
  • 154-pSHP2
  • 151-pERK1/2
  • 153-pMAPKAPK2
  • 156-pZAP70/Syk
  • 159-pSTAT3
  • 164-pSLP-76
  • 165-pNFkB
  • 166-IkBalpha
  • 168-pH3
  • 169-pP38
  • 171-pBtk/Itk
  • 172-pS6
  • 174-pSrcFK
  • 176-pCREB
  • 175-pCrkL

Analyses

See script folder. The file notebook-log.md has the detailed steps in the analyses.

About

Reproducible scripts for manuscript: Prediction of functional markers of mass cytometry data via deep learning (2019). Solis-Lemus, C., X. Ma, M. Hostetter II, S. Kundu, P. Qiu, D. Pimentel-Alarcon

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published