Releases: cumbof/hdlib
Releases · cumbof/hdlib
hdlib v0.1.18
hdlib v0.1.18
Add:
- The space dictionary as part of a
Space
object is now anOrderedDict
, makingSpace
objects iterable over their set of vectors; - Python examples under the
examples
folder are now available as part of thehdlib
package.
Fix:
- Fix dumping and loading
Vector
andSpace
objects to and from pickle files; space.Space.bulk_insert
function now checks whether the names of the input vectors are instances ofbool
,int
,float
,str
, andNone
before creating and inserting vectors into the space;- Distance thresholds in
space.Space.find
andspace.Space.find_all
are now set tonumpy.Inf
by default.
hdlib v0.1.17
hdlib v0.1.17
Add:
- Add the
subtraction
operator to thearithmetic
module; - Add
__sub__
tospace.Vector
that makes use ofarithmetic.subtraction
to element-wise subtract two Vector objects; - Add
space.Vector.subtraction
to element-wise subtract a vector from a Vector object inplace; - Add
graph.Graph
to build vector-symbolic representations of directed and undirected, weighted and unweighted graphs; - Extend test/test.py with new unit tests.
hdlib v0.1.16
hdlib v0.1.16
Add:
- Add
__add__
and__mul__
tospace.Vector
; model.MLModel.predict
now returns the model error rate.
Fix:
model.Model
is nowmodel.MLModel
;parser.kfolds_split
has been deprecated and removed;model.MLModel.cross_val_predict
now usessklearn.model_selection.StratifiedKFold
for the generation of balanced folds;- Fix the order of the test real labels before computing the model metrics in examples/chopin2.py.
hdlib v0.1.15
hdlib v0.1.15
Add:
- Add examples/chopin2_iris.sh as a test case for examples/chopin2.py;
- Add new unit tests to test/test.py.
Fix:
space.Space.bulk_insert
has been refactored to make use ofspace.Space.insert
;parser.load_dataset
now throws aValueError
in case of non-numerical datasets;- Add missing
import os
inspace.Model
.
hdlib v0.1.14
hdlib v0.1.14
Fix:
model.Model.fit
now correctly generates both bipolar and binary level vectors;space.Vector.dist
automatically converts the cosine similarity into a distance measure;model.Model.predict
andmodel.Model.error_rate
are now compatible with all the supported distance metrics (euclidean, hamming, and cosine).
hdlib v0.1.13
hdlib v0.1.13
Fix:
- Fix the retraining process in
model.Model.predict
.
hdlib v0.1.12
hdlib v0.1.12
Add:
examples/chopin2.py
now reports the Accuracy, F1, Precision, Recall, and the Matthews correlation coefficient for each of the folds in addition to the average of these scores as evaluation metrics of the hyperdimensional computing models;model.Model
class functions now raise different exceptions based on multiple checks on the input parameters.
hdlib v0.1.11
hdlib v0.1.11
Fix:
- The
model.Model.stepwise_regression
function now report the importance corresponding to the best score; - The
model.Model._init_fit_predict
function usesaverage="weighted"
for computing a score different from the accuracy to account for label imbalance; examples/chopin2.py
now computes different scores on the resulting predictions, prints the list of selected features based on the best score, and finally reports the confusion matrices.
hdlib v0.1.10
hdlib v0.1.10
Add:
- Add
error_rate
asmodel.Model
class method for computing the error rate of a classification model.
Fix:
- The
model.Model.predict
function computes the error rate before retraining the classification model.
hdlib v0.1.9
hdlib v0.1.9
Fix:
- Fix the retrining process in
model.Model.predict
to avoid overfitting.
hdlib
.