-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathREADME.Rmd
58 lines (46 loc) · 1.56 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# fable.bsts
[](https://www.tidyverse.org/lifecycle/#experimental)
This package provides a tidy R interface to the bsts forecasting procedure using [fable](https://github.com/tidyverts/fable). This package makes use of the [bsts package](https://cran.r-project.org/package=bsts) for R.
_While the `BSTS()` function works in the `fable::model()` framework, not all functionality from the package has been implemented._
## Completed
- Stationary and non-stationary trends
- Regression and trigonometric seasonalities
## In Progress
- Holiday models
- Exogenous regressors
- Monthly-annual cycle models
- User-specified priors
## Use
```{r}
# library(tidyverse)
#
# source("data-raw/lax_passengers.R")
# data <- lax_passengers %>%
# mutate(date = yearmonth(date))
#
# data %>%
# fabletools::model(
# bsts = BSTS(passengers ~ intercept() + ar() + seasonal("1 day"))
# ) %>%
# fabletools::forecast(h = 48) %>%
# autoplot()
```
### Specials implemented:
- `intercept()` - static intercept models
- `ar()` - autoregressive models
- `level()` - local and shared level models
- `trend()` - local linear, semilocal linear and Student local linear models
- `seasonal()` - seasonal regression models
- `trig()` - trigonometric seasonality models