Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update sharded_moe.py to support top2 gate with Tutel #6948

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions csrc/aio/common/deepspeed_aio_common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -300,8 +300,9 @@ int regular_read(const char* filename, std::vector<char>& buffer)
} while (r > 0);

if (read_bytes != num_bytes) {
std::cerr << "read error " << " read_bytes (read) = " << read_bytes
<< " num_bytes (fstat) = " << num_bytes << std::endl;
std::cerr << "read error "
<< " read_bytes (read) = " << read_bytes << " num_bytes (fstat) = " << num_bytes
<< std::endl;
}
assert(read_bytes == num_bytes);
close(fd);
Expand Down
10 changes: 6 additions & 4 deletions csrc/aio/py_lib/deepspeed_py_aio.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -71,8 +71,9 @@ int deepspeed_py_aio_write(const torch::Tensor& buffer,

const std::chrono::duration<double> fn_time =
std::chrono::high_resolution_clock::now() - start_time;
std::cout << "Elapsed time(usec): " << "aio = " << aio_time.count() * 1e6
<< " call = " << fn_time.count() * 1e6 << std::endl;
std::cout << "Elapsed time(usec): "
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
<< std::endl;
return 0;
}

Expand Down Expand Up @@ -117,7 +118,8 @@ int deepspeed_py_aio_read(torch::Tensor& buffer,

const std::chrono::duration<double> fn_time =
std::chrono::high_resolution_clock::now() - start_time;
std::cout << "Elapsed time(usec): " << "aio = " << aio_time.count() * 1e6
<< " call = " << fn_time.count() * 1e6 << std::endl;
std::cout << "Elapsed time(usec): "
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
<< std::endl;
return 0;
}
2 changes: 1 addition & 1 deletion csrc/aio/py_lib/deepspeed_py_copy.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ Functionality for swapping tensors to/from (NVMe) storage devices.
#include "deepspeed_py_copy.h"
#include <omp.h>

#define ROUND_DOWN(size, step) ((size) & ~((step) - 1))
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))

#if defined(__AVX512__) or defined(__AVX256__)
union AVX_Data {
Expand Down
10 changes: 6 additions & 4 deletions csrc/aio/py_lib/deepspeed_py_io_handle.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -95,8 +95,9 @@ int deepspeed_io_handle_t::read(torch::Tensor& buffer,
if (validate) { validate_aio_operation(true, filename, read_buffer, num_file_bytes); }
const std::chrono::duration<double> fn_time =
std::chrono::high_resolution_clock::now() - start_time;
std::cout << "Elapsed time(usec): " << "aio = " << aio_time.count() * 1e6
<< " call = " << fn_time.count() * 1e6 << std::endl;
std::cout << "Elapsed time(usec): "
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
<< std::endl;
return 0;
}

Expand Down Expand Up @@ -131,8 +132,9 @@ int deepspeed_io_handle_t::write(const torch::Tensor& buffer,

const std::chrono::duration<double> fn_time =
std::chrono::high_resolution_clock::now() - start_time;
std::cout << "Elapsed time(usec): " << "aio = " << aio_time.count() * 1e6
<< " call = " << fn_time.count() * 1e6 << std::endl;
std::cout << "Elapsed time(usec): "
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
<< std::endl;
return 0;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1207,7 +1207,8 @@ template <typename WarpShape,
typename RegularWarpIterator,
typename Policy,
typename Enable = void>
struct DefaultWarpIteratorAFromSharedMemory {};
struct DefaultWarpIteratorAFromSharedMemory {
};

// TensorOp - Ampere half
template <typename RegularWarpIterator, typename Policy>
Expand Down
9 changes: 5 additions & 4 deletions csrc/deepspeed4science/evoformer_attn/gemm_kernel_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -125,10 +125,11 @@ struct CheckArch {
std::cerr << #PTR " is not correctly aligned\n"; \
return false; \
}
#define EVOFORMER_CHECK(COND, ERR) \
if (!(COND)) { \
std::cerr << "[Evoformer Attention]" << "'" #COND "' failed: " << ERR << "\n"; \
return false; \
#define EVOFORMER_CHECK(COND, ERR) \
if (!(COND)) { \
std::cerr << "[Evoformer Attention]" \
<< "'" #COND "' failed: " << ERR << "\n"; \
return false; \
}
#endif

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,8 @@ namespace epilogue {
namespace threadblock {

template <class AccessType, class Enable = void>
struct atomic_store {};
struct atomic_store {
};

template <class AccessType>
struct atomic_store<AccessType,
Expand Down
2 changes: 1 addition & 1 deletion csrc/includes/simd.h
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ inline void writeAs(void* dst, const T& val)
std::memcpy(dst, &val, sizeof(T));
}

#define ROUND_DOWN(size, step) ((size) & ~((step) - 1))
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))

#if defined(__AVX512__)
#define SIMD_STORE(a, d) _mm512_storeu_ps(a, d)
Expand Down
3 changes: 2 additions & 1 deletion csrc/xpu/adam/multi_tensor_apply.dp.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,8 @@ class multi_tensor_apply_kernel {
// to make sure multi_tensor_apply_kernel can be used in sycl::buffer
namespace sycl {
template <typename T, typename U, typename... ArgTypes>
struct is_device_copyable<multi_tensor_apply_kernel<T, U, ArgTypes...>> : std::true_type {};
struct is_device_copyable<multi_tensor_apply_kernel<T, U, ArgTypes...>> : std::true_type {
};
} // namespace sycl

template <int depth, typename T, typename... ArgTypes>
Expand Down
3 changes: 2 additions & 1 deletion csrc/xpu/common/custom_cuda_kernel.dp.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,8 @@ inline void has_capability_or_fail(const sycl::device& dev,
break;
default:
#define __SYCL_ASPECT(ASPECT, ID) \
case sycl::aspect::ASPECT: return #ASPECT;
case sycl::aspect::ASPECT: \
return #ASPECT;
#define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
#define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string {
Expand Down
2 changes: 1 addition & 1 deletion csrc/xpu/includes/simd.h
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
#define TILE (128 * 1024 * 1024)
#if defined(__AVX512__) or defined(__AVX256__)

#define ROUND_DOWN(size, step) ((size) & ~((step) - 1))
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))

#if defined(__AVX512__)
#define SIMD_STORE(a, d) _mm512_storeu_ps(a, d)
Expand Down
10 changes: 5 additions & 5 deletions csrc/xpu/includes/type_shim.h
Original file line number Diff line number Diff line change
Expand Up @@ -82,11 +82,11 @@
}

template <typename T>
__inline__ __attribute__((always_inline)) T
reduce_block_into_lanes(T* x,
T val,
int lanes = 1,
bool share_result = false) // lanes is intended to be <= 32.
__inline__ __attribute__((always_inline)) T reduce_block_into_lanes(
T* x,
T val,
int lanes = 1,
bool share_result = false) // lanes is intended to be <= 32.
{
auto item_ct1 = sycl::ext::oneapi::experimental::this_nd_item<3>();
int tid = item_ct1.get_local_id(2) + item_ct1.get_local_id(1) * item_ct1.get_local_range(2);
Expand Down
29 changes: 24 additions & 5 deletions deepspeed/moe/sharded_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -292,7 +292,8 @@ def top2gating(logits: Tensor,
min_capacity: int,
drop_tokens: bool = True,
ep_group: Union[torch.distributed.ProcessGroup, None] = None,
top2_2nd_expert_sampling: bool = True) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
top2_2nd_expert_sampling: bool = True,
use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""Implements Top2Gating on logits."""
# everything is in fp32 in this function
gates = F.softmax(logits, dim=1)
Expand All @@ -313,8 +314,12 @@ def top2gating(logits: Tensor,
mask2 = F.one_hot(indices2_s, num_classes=num_experts)

# Compute locations in capacity buffer
locations1 = torch.cumsum(mask1, dim=0) - 1
locations2 = torch.cumsum(mask2, dim=0) - 1
if not use_tutel:
locations1 = torch.cumsum(mask1, dim=0) - 1
locations2 = torch.cumsum(mask2, dim=0) - 1
else:
locations1 = tutel_moe.fast_cumsum_sub_one(mask1)
locations2 = tutel_moe.fast_cumsum_sub_one(mask2)
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(mask1, dim=0, keepdim=True)

Expand Down Expand Up @@ -358,6 +363,19 @@ def top2gating(logits: Tensor,
gates1_s /= denom_s
gates2_s /= denom_s

if use_tutel:
# return critical information for tutel
return l_aux, capacity, num_experts, [
indices1_s,
indices2_s,
], [
locations1_s,
locations2_s,
], [
gates1_s,
gates2_s,
], exp_counts

# Calculate combine_weights and dispatch_mask
gates1 = einsum("s,se->se", gates1_s, mask1_float)
gates2 = einsum("s,se->se", gates2_s, mask2_float)
Expand Down Expand Up @@ -517,7 +535,8 @@ def forward(self,

elif self.k == 2:
gate_output = top2gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor,
self.min_capacity, self.drop_tokens, self.ep_group, self.top2_2nd_expert_sampling)
self.min_capacity, self.drop_tokens, self.ep_group, self.top2_2nd_expert_sampling,
use_tutel)
else:
gate_output = topkgating(logits, self.k,
self.capacity_factor if self.training else self.eval_capacity_factor,
Expand Down Expand Up @@ -568,7 +587,7 @@ def __init__(self,
self.timers = SynchronizedWallClockTimer()
self.wall_clock_breakdown = False

self.use_tutel = use_tutel and TUTEL_INSTALLED and gate.k == 1
self.use_tutel = use_tutel and TUTEL_INSTALLED and (gate.k == 1 or gate.k == 2)

if self.use_tutel:
logger.info('Using Tutel optimizations.')
Expand Down
Loading