-
Notifications
You must be signed in to change notification settings - Fork 4.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Draft] Add support for seq split in Domino #7111
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -118,7 +118,7 @@ def forward(self, query_layer, key_layer, value_layer, attention_mask): | |
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, | ||
key_layer, | ||
value_layer, | ||
attn_mask=None, | ||
attn_mask=attention_mask, | ||
dropout_p=self.att_dropout_p, | ||
is_causal=True, | ||
scale=None) | ||
|
@@ -260,21 +260,47 @@ def __init__(self, | |
self.bias_dropout_add_fused_inference = bias_dropout_add_fused_inference | ||
self.mpu = mpu | ||
self.output_bias = output_bias | ||
self.input_split_dim = config.input_split_dim | ||
|
||
# Layernorm on the input data. | ||
self.input_layernorm = fused_layer_norm(config.hidden_size, | ||
eps=config.layernorm_epsilon, | ||
no_persist_layer_norm=config.no_persist_layer_norm) | ||
|
||
# Self attention. | ||
self.self_attention = ShardedAttention(config, | ||
layer_number, | ||
mpu, | ||
ColumnParallelLinear, | ||
RowParallelLinearNoComm, | ||
apply_rotary_pos_emb, | ||
attention_type=AttnType.self_attn, | ||
attn_mask_type=self_attn_mask_type) | ||
if self.input_split_dim == "batch": | ||
self.self_attention = ShardedAttention(config, | ||
layer_number, | ||
mpu, | ||
ColumnParallelLinear, | ||
RowParallelLinearNoComm, | ||
apply_rotary_pos_emb, | ||
attention_type=AttnType.self_attn, | ||
attn_mask_type=self_attn_mask_type) | ||
elif self.input_split_dim == "seq": | ||
query_projection_size = config.kv_channels * config.num_attention_heads | ||
kv_projection_size = config.kv_channels * config.num_attention_heads | ||
|
||
# Per attention head and per partition values. | ||
world_size = mpu.get_tensor_model_parallel_world_size() | ||
self.hidden_size_per_attention_head = query_projection_size // config.num_attention_heads | ||
self.num_attention_heads_per_partition = config.num_attention_heads // world_size | ||
self.query_key_value = ColumnParallelLinear(config.hidden_size, | ||
query_projection_size + 2 * kv_projection_size, | ||
config=config, | ||
init_method=config.init_method, | ||
bias=config.add_bias_linear, | ||
gather_output=False) | ||
self.self_attention_sp = CoreAttention(config, self.layer_number, mpu, self_attn_mask_type) | ||
self.dense = RowParallelLinearNoComm(query_projection_size, | ||
config.hidden_size, | ||
config=config, | ||
init_method=config.output_layer_init_method, | ||
bias=config.add_bias_linear, | ||
input_is_parallel=True, | ||
skip_bias_add=True) | ||
else: | ||
raise NotImplementedError | ||
|
||
self.hidden_dropout = config.hidden_dropout | ||
|
||
|
@@ -356,20 +382,73 @@ def forward(self, hidden_states, attention_mask, rotary_pos_emb=None): | |
if not self.llama_model: | ||
rotary_pos_emb = None | ||
|
||
attention_output0, attention_bias0 = \ | ||
self.self_attention( | ||
layernorm_output0, | ||
if self.input_split_dim == "seq": | ||
# Compute full Q, K, V | ||
layernorm_output = torch.concat([layernorm_output0, layernorm_output1], dim=0) | ||
mixed_x_layer, _ = self.query_key_value(layernorm_output) | ||
|
||
# [s, b, np * 3 * hn] --> [s, b, np, 3 * hn] | ||
new_tensor_shape = mixed_x_layer.size()[:-1] + ( | ||
self.num_attention_heads_per_partition, | ||
3 * self.hidden_size_per_attention_head, | ||
) | ||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | ||
|
||
# [s, b, np, 3 * hn] -> [b, np, s, 3*hn] | ||
mixed_x_layer = mixed_x_layer.permute(1, 2, 0, 3).contiguous() | ||
# [s, b, np, 3 * hn] --> [s, b, np, hn], [s, b, np, hn], [s, b, np, hn] | ||
(query_layer, key_layer, value_layer) = torch.split(mixed_x_layer, [ | ||
self.hidden_size_per_attention_head, self.hidden_size_per_attention_head, | ||
self.hidden_size_per_attention_head | ||
], dim=3) | ||
|
||
# [s, b, np, np * hn] -> [s, b, np, hn] | ||
query_layer = query_layer.view(query_layer.size(0), query_layer.size(1), -1, | ||
self.hidden_size_per_attention_head) | ||
|
||
if rotary_pos_emb is not None: | ||
if isinstance(rotary_pos_emb, tuple): | ||
rotary_pos_emb = rotary_pos_emb | ||
else: | ||
rotary_pos_emb = ((rotary_pos_emb, ) * 2) | ||
q_pos_emb, k_pos_emb = rotary_pos_emb | ||
query_layer = self.apply_rotary_pos_emb(query_layer, q_pos_emb) | ||
key_layer = self.apply_rotary_pos_emb(key_layer, k_pos_emb) | ||
|
||
batchsize, num_heads, seq_len, hidden_per_head = query_layer.shape[0], query_layer.shape[1], query_layer.shape[2], query_layer.shape[3] | ||
|
||
# seq 0: core attention | ||
context_layer0 = self.self_attention_sp(query_layer[:, :, :seq_len//2, :], key_layer, value_layer, attention_mask[:, :, :seq_len//2, :]) | ||
# Output. [s, b, h] | ||
attention_output0, attention_bias0 = self.dense(context_layer0) | ||
|
||
handle0 = dist.all_reduce(attention_output0, group=self.mpu.get_tensor_model_parallel_group(), async_op=True) | ||
|
||
# seq 1: core attention | ||
context_layer1 = self.self_attention_sp(query_layer[:, :, seq_len//2:, :], key_layer, value_layer, attention_mask[:, :, seq_len//2:, :]) | ||
# Output. [s, b, h] | ||
attention_output1, attention_bias1 = self.dense(context_layer1) | ||
|
||
handle1 = dist.all_reduce(attention_output1, group=self.mpu.get_tensor_model_parallel_group(), async_op=True) | ||
handle0.wait() | ||
Comment on lines
+387
to
+433
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. these are exactly the same as sharedAttention forward, I don't see why we need these duplication here. Also please follow our current code hierarchy, not pull up lower layer module implementation code to upper layer module. e.g., if any real change need to make on |
||
|
||
elif self.input_split_dim == "batch": | ||
attention_output0, attention_bias0 = \ | ||
self.self_attention( | ||
layernorm_output0, | ||
attention_mask, | ||
rotary_pos_emb=rotary_pos_emb) | ||
handle0 = dist.all_reduce(attention_output0, group=self.mpu.get_tensor_model_parallel_group(), async_op=True) | ||
|
||
attention_output1, attention_bias1 = \ | ||
self.self_attention( | ||
layernorm_output1, | ||
attention_mask, | ||
rotary_pos_emb=rotary_pos_emb) | ||
handle0 = dist.all_reduce(attention_output0, group=self.mpu.get_tensor_model_parallel_group(), async_op=True) | ||
|
||
attention_output1, attention_bias1 = \ | ||
self.self_attention( | ||
layernorm_output1, | ||
attention_mask, | ||
rotary_pos_emb=rotary_pos_emb) | ||
handle1 = dist.all_reduce(attention_output1, group=self.mpu.get_tensor_model_parallel_group(), async_op=True) | ||
handle0.wait() | ||
handle1 = dist.all_reduce(attention_output1, group=self.mpu.get_tensor_model_parallel_group(), async_op=True) | ||
handle0.wait() | ||
else: | ||
raise NotImplementedError | ||
|
||
# Residual0 connection. | ||
if self.apply_residual_connection_post_layernorm: | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this is duplication of shardedAttention module's detail implementation.