A scala DSL to generate JSON schema and swagger documentation for your web services.
While being to some extent usable for Scala projects, swagger-core suffers from some serious limitations:
-
It heavily relies on Java runtime reflection to generate Json schemas for your data models. This might be fine for plain Java objects, but it does not really play well with key scala idioms such as case classes and sealed trait hierarchies.
-
Swagger is implemented through JAX-RS annotations. These provide way more limited means of abstraction and code reuse than a DSL directly embedded into Scala.
Add the following to your build.sbt
libraryDependencies += "com.dividat" %% "docless" % doclessVersion
This project uses Shapeless to automatically derive JSON schemas for case classes and ADTs at compile time. By scraping unnecessary boilerplate code, this approach helps keeping documentation in sync with the relevant business entities.
import com.dividat.docless.schema._
case class Pet(id: Int, name: String, tag: Option[String])
val petSchema = JsonSchema.deriveFor[Pet]
Given a case class, generating a JSON schema is as easy as calling the
deriveFor
method and supplying the class as type parameter.
scala> petSchema.asJson
res2: io.circe.Json =
{
"type" : "object",
"required" : [
"id",
"name"
],
"properties" : {
"id" : {
"type" : "integer",
"format" : "int32"
},
"name" : {
"type" : "string"
},
"tag" : {
"type" : "string"
}
}
}
The generated schema can be serialised to JSON by calling the asJson
method, which will return a
Circe JSON ast.
Arguably, the idea of ADT or sum type is best expressed using JsonSchema
oneOf keyword. However, as Swagger UI seems to only support the
allOf
,
this library uses the latter as default. This can be easily overriden by
defining an implicit instance of derive.Config
in the local scope:
import com.dividat.docless.schema.derive.{Config, Combinator}
sealed trait Contact
case class EmailAndPhoneNum(email: String, phoneNum: String) extends Contact
case class EmailOnly(email: String) extends Contact
case class PhoneOnly(phoneNum: String) extends Contact
object Contact {
implicit val conf: Config = Config(Combinator.OneOf)
val schema = JsonSchema.deriveFor[Contact]
}
scala> Contact.schema.asJson
res5: io.circe.Json =
{
"type" : "object",
"oneOf" : [
{
"$ref" : "#/definitions/EmailAndPhoneNum"
},
{
"$ref" : "#/definitions/EmailOnly"
},
{
"$ref" : "#/definitions/PhoneOnly"
}
]
}
For ADTs, as well as for case classes, the
JsonSchema.relatedDefinitions
method can be used to access the child definitions referenced in a
schema:
scala> Contact.schema.relatedDefinitions.map(_.id)
res6: scala.collection.immutable.Set[String] = Set(PhoneOnly, EmailOnly, EmailAndPhoneNum)
Docless can automatically derive a Json schema enum for sum types consisting of case objects only:
sealed trait Diet
case object Herbivore extends Diet
case object Carnivore extends Diet
case object Omnivore extends Diet
Enumeration values can be automatically converted into a string
identifier
using one of the pre-defined formats.
import com.dividat.docless.schema.PlainEnum.IdFormat
implicit val format: IdFormat = IdFormat.SnakeCase
val schema = JsonSchema.deriveEnum[Diet]
scala> schema.asJson
res10: io.circe.Json =
{
"enum" : [
"herbivore",
"carnivore",
"omnivore"
]
}
Finally, types that extend
enumeratum EnumEntry
are
also supported through the EnumSchema
trait:
import enumeratum._
import com.dividat.docless.schema.EnumSchema
sealed trait RPS extends EnumEntry with EnumEntry.Snakecase
object RPS extends Enum[RPS] with EnumSchema[RPS] {
case object Rock extends RPS
case object Paper extends RPS
case object Scissors extends RPS
override def values = findValues
}
This trait will define on the companion object an implicit instance of
JsonSchema[RPS]
.
Docless provides a native scala implementation of the Swagger 2.0 model together with a DSL to easily manipulate and transform it.
import com.dividat.docless.swagger._
import com.dividat.docless.schema._
object PetsRoute extends PathGroup {
val petResp = petSchema.asResponse("The pet")
val petIdParam = Parameter
.path(
name = "id",
description = Some("The pet id"),
format = Some(Format.Int32)
).as[Int]
override val definitions = List(petSchema, errSchema).map(_.definition)
override val paths = List(
"/pets/{id}"
.Get(
Operation(
summary = Some("info for a specific pet")
).withParams(petIdParam)
.responding(errorResponse)(200 -> petResp)
)
.Delete(
Operation() //...
)
)
}
This not only provides better means of abstraction that JSON or YAML (i.e. binding, high order functions, implicit conversions, etc.), but it also allows to integrate API documentation more tightly to the application code.
Aside for using Circe for JSON serialisation, Docless is not coupled to any specific Scala web framework. Nevertheless, it does provide a generic facility to enrich separate code modules with Swagger metadata, being these routes, controllers, or whatever else your framework calls them.
import com.dividat.docless.swagger._
case class Dino(name: String, extinctedSinceYears: Long, diet: Diet)
object DinosRoute extends PathGroup {
val dinoSchema = JsonSchema.deriveFor[Dino]
val dinoId = Parameter.path("id").as[Int]
val dinoResp = dinoSchema.asResponse("A dinosaur!")
override def definitions = Nil //<= this should be instead: `dinoSchema.definitions.toList`
override def paths = List(
"/dinos/{id}"
.Get(
Operation(
summary = Some("info for a specific pet")
).withParams(dinoId)
.responding(errorResponse)(200 -> dinoResp)
)
)
}
The PathGroup
trait allows any Scala class or object to publish a list
of endpoint paths and schema definitions. The aggregate
method in the
PathGroup
companion object can then be used to merge the supplied
groups into a single Swagger API description.
scala> val apiInfo = Info("Example API")
apiInfo: com.dividat.docless.swagger.Info = Info(Example API,1.0,None,None,None,None)
scala> PathGroup.aggregate(apiInfo, List(PetsRoute, DinosRoute))
res15: cats.data.ValidatedNel[com.dividat.docless.swagger.SchemaError,com.dividat.docless.swagger.APISchema] = Invalid(NonEmptyList(MissingDefinition(RefWithContext(TypeRef(Dino,None),ResponseContext(Get,/dinos/{id})))))
The aggregate
method will also verify that the schema definitions
referenced either in endpoint responses or in body parameters can be
resolved. In the example above, the method returns a non-empty list with
a single ResponseRef
error, pointing to the missing Dino
definition.
On correct inputs, the method will return instead the resulting
APISchema
wrapped into a cats.data.Validated.Valid
.
Currently Docless does not support recursive types (e.g. trees or linked
lists). As a way around, one can always define them manually using the
JsonSchema.instance[A]
method.