Python library to interact with Smartsheet API easily
Requires Python 3.6+
pip install simple-smartsheet
smartsheet-python-sdk
has very wide object coverage and maps to Smartsheet API very nicely, but it does not have some convenience features (for example, easy access to cells by column titles).
simple-smartsheet
library is focused on the user experience in expense of feature coverage.
As of now, you can only interact with Sheets and Reports and their children objects (rows, columns, cells).
Additionally, simple-smartsheet
supports asyncio and provides both sync and async API at the same time.
import os
from datetime import date
from pprint import pprint
from simple_smartsheet import Smartsheet
from simple_smartsheet.models import Sheet, Column, Row, Cell, ColumnType
TOKEN = os.getenv("SMARTSHEET_API_TOKEN")
SHEET_NAME = "[TEST] My New Sheet"
smartsheet = Smartsheet(TOKEN)
# retrieve a list of sheets (limited set of attributes)
sheets = smartsheet.sheets.list()
pprint(sheets)
# delete the test sheet if already exists
for sheet in sheets:
if sheet.name == SHEET_NAME:
smartsheet.sheets.delete(id=sheet.id)
# create a new Sheet
new_sheet_skeleton = Sheet(
name=SHEET_NAME,
columns=[
Column(primary=True, title="Full Name", type=ColumnType.TEXT_NUMBER),
Column(title="Number of read books", type=ColumnType.TEXT_NUMBER),
Column(title="Birth date", type=ColumnType.DATE),
Column(title="Library member", type=ColumnType.CHECKBOX),
],
)
# print the sheet object attributes used by the Smartsheet API (camelCase)
pprint(new_sheet_skeleton.dump())
# add the sheet via API
result = smartsheet.sheets.create(new_sheet_skeleton)
sheet = result.obj
print(f"ID of the created sheet is {sheet.id!r}")
# retrieve a sheet by name
# this object is exactly the same as result.obj
sheet = smartsheet.sheets.get(SHEET_NAME)
# get columns details by column title (case-sensitive)
full_name_column = sheet.get_column("Full Name")
pprint(full_name_column.__dict__)
num_books_column = sheet.get_column("Number of read books")
pprint(num_books_column.__dict__)
# add rows (cells are created using different ways)
# second way is the easiest
new_rows = [
Row(
to_top=True,
cells=[
Cell(column_id=full_name_column.id, value="Alice Smith"),
Cell(column_id=num_books_column.id, value=5),
],
),
Row(
to_top=True,
cells=sheet.make_cells(
{"Full Name": "Bob Lee", "Number of read books": 2}
),
),
Row(
to_top=True,
cells=[
sheet.make_cell("Full Name", "Charlie Brown"),
sheet.make_cell("Number of read books", 1),
sheet.make_cell("Birth date", date(1990, 1, 1)),
],
),
]
smartsheet.sheets.add_rows(sheet.id, new_rows)
# sort rows by column "Full Name" descending / returns updated sheet
sheet = smartsheet.sheets.sort_rows(
sheet, [{"column_title": "Full Name", "descending": True}]
)
print("\nSheet after adding rows:")
# print a list of dictionaries containing column titles and values for each row
pprint(sheet.as_list())
# get a specific cell and updating it:
row_id_to_delete = None
rows_to_update = []
for row in sheet.rows:
full_name = row.get_cell("Full Name").value
num_books = row.get_cell("Number of read books").value
print(f"{full_name} has read {num_books} books")
if full_name.startswith("Charlie"):
updated_row = Row(
id=row.id, cells=[sheet.make_cell("Number of read books", 15)]
)
rows_to_update.append(updated_row)
elif full_name.startswith("Bob"):
row_id_to_delete = row.id # used later
# update rows
smartsheet.sheets.update_rows(sheet.id, rows_to_update)
# or a single row
# smartsheet.sheets.update_row(sheet.id, rows_to_update[0])
# get an updated sheet
sheet = smartsheet.sheets.get(id=sheet.id)
print("\nSheet after updating rows:")
pprint(sheet.as_list())
# delete a row
smartsheet.sheets.delete_row(sheet.id, row_id_to_delete)
# get an updated sheet
sheet = smartsheet.sheets.get(id=sheet.id)
print("\nSheet after deleting rows:")
pprint(sheet.as_list())
# delete a sheet by name
smartsheet.sheets.delete(SHEET_NAME)
sheets = smartsheet.sheets.list()
pprint(sheets)
While a separate docs page is work in progress, available public API is described here
This class a main entry point for the library
Methods:
def __init__(token: str)
: constructor for the class
Attributes:
token
: Smartsheet API token, obtained in Personal Settings -> API accesssheets
:simple_smartsheet.models.sheet.SheetCRUD
object which provides methods to interact with sheetsreports
:simple_smartsheet.models.report.ReportCRUD
object which provides methods to interact with reports
Methods:
def get(name: Optional[str], id: Optional[int]) -> Sheet
: fetches Sheet by name or ID.def list() -> List[Sheet]
: fetches a list of all sheets (summary only)def create(obj: Sheet) -> Result
: adds a new sheetdef update(obj: Sheet) -> Result
: updates a sheetdef delete(name: Optional[str], id: Optional[int]) -> Result
: deletes a sheet by name or IDdef add_rows(sheet_id: int, rows: Sequence[Row]) -> Result
: adds rows to the sheetdef add_row(sheet_id: int, row: Row) -> Result
: add a single row to the sheetdef update_rows(sheet_id: int, rows: Sequence[Row]) -> Result
: updates several rows in the sheetdef update_row(sheet_id: int, row: Row) -> Result
: updates a single rowdef delete_rows(sheet_id: int, row_ids: Sequence[int]) -> Result
: deletes several rows with provided idsdef delete_row(sheet_id: int, row_id: int) -> Result
: deletes a single row with a provided iddef sort_rows(sheet: Sheet, order: List[Dict[str, Any]]) -> Sheet
: sorts sheet rows with the specified order, e.g.:
sheet.sort_rows([
{"column_title": "Birth date", "descending": True},
{"column_title": "Full Name"}
])
The methods listed below are asynchronous version of methods in SheetCRUD
, listed for completeness:
async def get(name: Optional[str], id: Optional[int]) -> Sheet
async def list() -> List[Sheet]
async def create(obj: Sheet) -> Result
async def update(obj: Sheet) -> Result
async def delete(name: Optional[str], id: Optional[int]) -> Result
async def add_rows(sheet_id: int, rows: Sequence[Row]) -> Result
async def add_row(sheet_id: int, row: Row) -> Result
async def update_rows(sheet_id: int, rows: Sequence[Row]) -> Result
async def update_row(sheet_id: int, row: Row) -> Result
async def delete_rows(sheet_id: int, row_ids: Sequence[int]) -> Result
async def delete_row(sheet_id: int, row_id: int) -> Result
async def sort_rows(sheet: Sheet, order: List[Dict[str, Any]]) -> Sheet
Attributes (converted from camelCase to snake_case):
Methods:
def get_row(row_num: Optional[int], row_id: Optional[int], filter: Optional[Dict[str, Any]]) -> Optional[Row]
: returns a Row object by row number, ID or by filter, if a unique index was built (see section "Custom Indexes")def get_rows(index_query: Dict[str, Any]) -> List[Row]
: returns list of Row objects by filter, if an index was built (see section "Custom Indexes")def get_column(column_title: Optional[str], column_id: Optional[int]) -> Column
: returns a Column object by column title or iddef build_index(indexes: List[IndexKeysDict]) -> None
: builds one or more indexes for quick row lookup usingget_row
orget_rows
, e.g.:
sheet.build_index([
{"columns": ("Company Name",), "unique": False},
{"columns": ("Company Name", "Full Name"), "unique": True}
])
def make_cell(column_title: str, field_value: Union[float, str, datetime, None]) -> Cell
: creates a Cell object with provided column title and an associated valuedef make_cells(fields: Dict[str, Union[float, str, datetime, None]]) -> List[Cell]
: creates a list of Cell objects from an input dictionary where column title is key associated with the field valuedef as_list() -> List[Dict[str, Any]]
: returns a list of dictionaries where column title is key associated with the field value
Attributes (converted from camelCase to snake_case):
- http://smartsheet-platform.github.io/api-docs/#rows
rowNumber
is mapped tonum
Methods:
def get_cell(column_title: Optional[str], column_id: Optional[int]) -> Cell
- returns a Cell object by column title (case-sensitive) or column iddef as_dict() -> Dict[str, Any]
- returns a dictionary of column title to cell value mappings
Attributes (converted from camelCase to snake_case):
Attributes (converted from camelCase to snake_case):
Attributes (converted from camelCase to snake_case):
- https://smartsheet-platform.github.io/api-docs/#result-object
result
attribute is renamed toobj
to avoid confusion of callingresult.result
.result
attribute is still available via property
Attributes (converted from camelCase to snake_case):
Implements the following Sheet methods:
def get_row(row_num: Optional[int], row_id: Optional[int], filter: Optional[Dict[str, Any]]) -> ReportRow
: returns a ReportRow object by row number, ID or by filter, if a unique index was built (see section "Custom Indexes")def get_rows(index_query: Dict[str, Any]) -> List[ReportRow]
: returns list of ReportRow objects by filter, if an index was built (see section "Custom Indexes")def get_column(column_title: Optional[str], column_id: Optional[int]) -> ReportColumn
: returns a ReportColumn object by column title or iddef build_index(indexes: List[IndexKeysDict]) -> None
: builds one or more indexes for quick row lookup usingget_row
orget_rows
, e.g.:
sheet.build_index([
{"columns": ("Company Name",), "unique": False},
{"columns": ("Company Name", "Full Name"), "unique": True}
])
def as_list() -> List[Dict[str, Any]]
: returns a list of dictionaries where column title is key associated with the field value
It is possible to build indexes to enable quick rows lookups for sheets and reports. For this, after retrieving the sheet, call sheet.build_index
function. It takes only one argument: a list of dictionaries, where every dictionary has two keys columns
and unique
. columns
should contain a tuple with column titles (case sensitive). unique
controls if the index always points to a single row (value True
, lookups are done using get_row
method) or multiple rows (value False
, lookups are done using get_rows
method).
Below you can find a code snippet (see the full example in examples/custom_indexes.py
):
INDEXES = [
{"columns": ("Company",), "unique": False},
{"columns": ("Company", "Full Name"), "unique": True},
{"columns": ("Email address",), "unique": True},
]
sheet = smartsheet.sheets.get("[TEST] Index Sheet")
sheet.build_index(INDEXES)
print("\nRow where email address is '[email protected]':")
print(sheet.get_row(filter={"Email Address": "[email protected]"}).as_dict())
# >
# {'Company Name': 'Globex',
# 'Email Address': '[email protected]',
# 'Full Name': 'Charlie Brown'}
print("\nRows where the company name is 'ACME':")
print([row.as_dict() for row in sheet.get_rows(filter={"Company Name": "ACME"})])
# >
# [{'Company Name': 'ACME',
# 'Email Address': '[email protected]',
# 'Full Name': 'Alice Smith'},
# {'Company Name': 'ACME',
# 'Email Address': '[email protected]',
# 'Full Name': 'Bob Lee'}]
The library supports asyncio for all i/o methods, instead of calling:
smartsheet = Smartsheet(token)
sheet = smartsheets.sheets.get('my-sheet')
you need to call asynchronous context manager with an async version of smartsheet class:
with AsyncSmartsheet(token) as smartsheet:
sheet = await smartsheet.sheets.get('my-sheet')
A complete asyncio example with different operations on sheets and reports can be found in examples/async.py
If pandas is installed (either separately or as extras pip install simple-smartsheet[pandas]
), sheets and rows can be exported as pandas.DataFrame
or pandas.Series
respectively. Besides column titles and respective values from the sheet, they will also include row IDs and row numbers
sheet = smartsheets.sheets.get('my-sheet')
df = sheet.as_dataframe()
series = sheet.rows[0].as_series()