-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add dl3dv eval index generator, thanks @lhmd.
- Loading branch information
Showing
1 changed file
with
151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
""" | ||
Generate the evaluation index for DL3DV-10K dataset. | ||
python -m src.scripts.generate_evaluation_index_dl3dv --data_dir=datasets/dl3dv/test --num_target_views=56 | ||
""" | ||
|
||
import torch | ||
from einops import rearrange, repeat | ||
from jaxtyping import Float | ||
from torch import Tensor | ||
import json | ||
import argparse | ||
import os | ||
from glob import glob | ||
from tqdm import tqdm | ||
from collections import OrderedDict | ||
|
||
from ..dataset.view_sampler.view_sampler_bounded_v2 import farthest_point_sample | ||
|
||
|
||
def convert_poses( | ||
poses: Float[Tensor, "batch 18"], | ||
) -> tuple[ | ||
Float[Tensor, "batch 4 4"], # extrinsics | ||
Float[Tensor, "batch 3 3"], # intrinsics | ||
]: | ||
b, _ = poses.shape | ||
|
||
# Convert the intrinsics to a 3x3 normalized K matrix. | ||
intrinsics = torch.eye(3, dtype=torch.float32) | ||
intrinsics = repeat(intrinsics, "h w -> b h w", b=b).clone() | ||
fx, fy, cx, cy = poses[:, :4].T | ||
intrinsics[:, 0, 0] = fx | ||
intrinsics[:, 1, 1] = fy | ||
intrinsics[:, 0, 2] = cx | ||
intrinsics[:, 1, 2] = cy | ||
|
||
# Convert the extrinsics to a 4x4 OpenCV-style W2C matrix. | ||
w2c = repeat(torch.eye(4, dtype=torch.float32), "h w -> b h w", b=b).clone() | ||
w2c[:, :3] = rearrange(poses[:, 6:], "b (h w) -> b h w", h=3, w=4) | ||
return w2c.inverse(), intrinsics | ||
|
||
|
||
def partition_list(lst, n_bins): | ||
if n_bins <= 0: | ||
raise ValueError("Number of bins must be greater than 0") | ||
if len(lst) < n_bins: | ||
raise ValueError("Number of bins cannot exceed the length of the list") | ||
|
||
bin_size = len(lst) // n_bins | ||
borders = [lst[0]] # First border is always the first index | ||
for i in range(1, n_bins): | ||
border_index = min( | ||
i * bin_size, len(lst) - 1 | ||
) # Ensure last bin doesn't exceed list length | ||
borders.append(lst[border_index]) | ||
borders.append(lst[-1]) # Last border is always the last index | ||
return borders | ||
|
||
|
||
def find_train_and_test_index( | ||
chunk_path, | ||
scene_name=None, | ||
num_context_views=5, | ||
num_target_skip=1, | ||
num_target_views=28, | ||
view_selection_ratio=1.0, | ||
): | ||
chunk = torch.load(chunk_path) | ||
out_dict = OrderedDict() | ||
for example in chunk: | ||
cur_scene_name = example["key"] | ||
if scene_name is not None and cur_scene_name != scene_name: | ||
continue | ||
|
||
extrinsics, intrinsics = convert_poses(example["cameras"]) | ||
n_views = extrinsics.shape[0] | ||
# choose only the first n views for evaluation | ||
n_views = int(n_views * view_selection_ratio) | ||
|
||
index_context = sorted( | ||
farthest_point_sample( | ||
extrinsics[:n_views, :3, -1].unsqueeze(0), num_context_views | ||
) | ||
.squeeze(0) | ||
.tolist() | ||
) | ||
|
||
index_target_all = [x for x in range(n_views) if x not in index_context] | ||
index_target_select = partition_list(index_target_all, num_target_views) | ||
assert ( | ||
len(index_target_select) >= num_target_views | ||
), f"double check {cur_scene_name} at {chunk_path}: target len: {len(index_target_select)} from {len(index_target_all)}" | ||
index_target = index_target_select[:num_target_views] | ||
|
||
out_dict[cur_scene_name] = {"context": index_context, "target": index_target} | ||
|
||
return out_dict | ||
|
||
|
||
def generate_index_file(args): | ||
n_ctx = args.num_context_views | ||
n_tgt = args.num_target_views | ||
|
||
out_dir = f"assets/dl3dv_evaluation" | ||
os.makedirs(out_dir, exist_ok=True) | ||
# data_dir = "datasets/DL3DV-10K/dl3dv_benchmark/test" | ||
data_dir = args.data_dir | ||
chunk_paths = sorted(glob(os.path.join(data_dir, "*.torch"))) # [:2] | ||
out_dict_all = OrderedDict() | ||
for chunk_path in tqdm(chunk_paths): | ||
out_dict = find_train_and_test_index( | ||
chunk_path, | ||
scene_name=None, | ||
num_context_views=n_ctx, | ||
num_target_views=n_tgt, | ||
view_selection_ratio=args.view_selection_ratio, | ||
) | ||
out_dict_all.update(out_dict) | ||
|
||
out_name = f"dl3dv_ctx_{n_ctx}v_tgt_{n_tgt}v" | ||
if args.view_selection_ratio < 1: | ||
out_name = f"{out_name}_n{int(args.view_selection_ratio * 300)}" | ||
out_path = os.path.join(out_dir, f"{out_name}.json") | ||
|
||
with open(out_path, "w") as f: | ||
json.dump(out_dict_all, f) | ||
|
||
print(f"Save index to {out_path}.") | ||
print("Done") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--data_dir", type=str, help="root dir of the test data") | ||
parser.add_argument( | ||
"--num_target_views", type=int, default=56, help="num of target views" | ||
) | ||
parser.add_argument( | ||
"--num_context_views", type=int, default=5, help="num of context views" | ||
) | ||
parser.add_argument( | ||
"--view_selection_ratio", | ||
type=float, | ||
default=1.0, | ||
help="test ratio; set to 0.5 for N=150", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
generate_index_file(args) |