Skip to content

Commit

Permalink
Merge pull request #3 from dylannalex/develop
Browse files Browse the repository at this point in the history
Bump to 1.0.0
  • Loading branch information
dylannalex authored Oct 22, 2022
2 parents 05e7def + 12f6b68 commit 8c7c3dc
Show file tree
Hide file tree
Showing 27 changed files with 1,204 additions and 752 deletions.
21 changes: 21 additions & 0 deletions .readthedocs.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# .readthedocs.yaml
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details

# Required
version: 2

# Set the version of Python and other tools you might need
build:
os: ubuntu-20.04
tools:
python: "3.9"

# Build documentation in the docs/ directory with Sphinx
sphinx:
configuration: docs/conf.py

# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: docs/requirements.txt
260 changes: 245 additions & 15 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,30 +1,260 @@
# curvipy :triangular_ruler:

[![Downloads](https://pepy.tech/badge/curvipy)](https://pepy.tech/project/curvipy)
![licence](https://img.shields.io/github/license/dylannalex/curvipy?color=blue)

curvipy is a Python package which aims to provide simple tools to teach the fundamentals of linear
algebra (vectors operations, matrices and linear transformations) and the basics of functions and
parametric curves.
# What is Curvipy?

Curvipy is a Python library for making math animations in a few lines of code.

Curvipy is inspired on manim, an animation engine for making math videos. Despite manim being an exceptionally tool, it is quite hard to learn and use, specially for simple animations. Curvipy solves this issue by providing a less powerful but much easier to use package, with which you can plot two-dimensional curves and vectors.

# Installation

You can start using Curvipy by installing it via pip.

```
$ pip install curvipy
```

# Usage Example

Curvipy is a great tool for learning and teaching math with animations. In this section you can find different topics being explained with Curvipy.

## Functions Translations

A function has been translated when it has been moved in a way that does not change its shape or rotate it in any way. A function can be translated either *vertically*, *horizontally*, or both.

To visualize translations, we will use the function $f(x) = x^{2}$, where $x \in [-15, 15]$.

```python
import curvipy
import turtle


def f(x):
return x**2


plotter = curvipy.Plotter(x_axis_scale=50, y_axis_scale=20)
interval = curvipy.Interval(start=-15, end=15, samples=45)
plotter.plot_curve(curvipy.Function(f), interval)

turtle.exitonclick()
```

<p align="center">
<img width="400" height="400" src="../media/demo.gif?raw=true">
<img width="500" height="500" src="docs/source/img/function_x_squared.png">
</p>

_**NOTE:**_ curvipy is not meant to be a precise graphing calculator, but a package for making
animations in a few lines of code.
### Horizontal Translation

In a horizontal translation, the function is moved along the x-axis.

```python
import curvipy
import turtle


def f(x):
return x**2

## :pencil2: Installation

Install curvipy package with pip:
def g(x):
"""f(x) moved 3 units to the right."""
return f(x - 3)


def m(x):
"""f(x) moved 3 units to the left."""
return f(x + 3)


plotter = curvipy.Plotter(x_axis_scale=50, y_axis_scale=20)
interval = curvipy.Interval(start=-15, end=15, samples=45)
plotter.curve_color = "#FF7B61" # Red
plotter.plot_curve(curvipy.Function(g), interval)
plotter.curve_color = "#F061FF" # Purple
plotter.plot_curve(curvipy.Function(m), interval)

turtle.exitonclick()
```
$ pip install curvipy

<p align="center">
<img width="500" height="500" src="docs/source/img/horizontal_translation.png">
</p>

### Vertical Translation

In a horizontal translation, the function is moved along the y-axis.

```python
import curvipy
import turtle


def f(x):
return x**2


def g(x):
"""f(x) moved 3 units down."""
return f(x) - 3


def m(x):
"""f(x) moved 3 units up."""
return f(x) + 3


plotter = curvipy.Plotter(x_axis_scale=50, y_axis_scale=20)
interval = curvipy.Interval(start=-15, end=15, samples=45)
plotter.curve_color = "#FF7B61" # Red
plotter.plot_curve(curvipy.Function(g), interval)
plotter.curve_color = "#F061FF" # Purple
plotter.plot_curve(curvipy.Function(m), interval)

turtle.exitonclick()
```
or clone the repository:

<p align="center">
<img width="500" height="500" src="docs/source/img/vertical_translation.png">
</p>

## Linear transformations

A linear transformation is a mapping $V \rightarrow W$ between two vector spaces that preserves the operations of vector addition and scalar multiplication.

Curvipy is great for visualizing how a linear transformation transform the two-dimensional space.

### Transformation matrix

In linear algebra, linear transformations can be represented by matrices. If $T$ is a linear transformation mapping $R^n$ to $R^m$ and $\vec{x}$ is a column vector then

$T(\vec{x}) = A\vec{x}$

where $A$ is an $m x n$ matrix called the *transformation matrix* of $T$.

With Curvipy, you can visualize how linear transformations transforms two-dimensional curves with the `curvipy.TransformedCurve` class. Let's visualize how the matrix

$$
A =
\begin{bmatrix}
0 & -1\\
1 & 0
\end{bmatrix}
$$

transforms the function $f(x) = sin(x)$.

```python
import math
import curvipy
import turtle


curve = curvipy.Function(math.sin)
interval = curvipy.Interval(-10, 10, 50)
A = ((0, -1), (1, 0))
plotter = curvipy.Plotter(x_axis_scale=25, y_axis_scale=25)

# Plot curve:
plotter.curve_color = "#FF7B61" # Red
plotter.plot_curve(curve, interval)
# Plot transformed curve:
plotter.curve_color = "#457B9D" # Blue
plotter.plot_curve(curvipy.TransformedCurve(A, curve), interval)

turtle.exitonclick() # Exits plotter on click
```
$ git clone https://github.com/dylannalex/curvipy.git

<p align="center">
<img width="500" height="500" src="docs/source/img/transformation_matrix.png">
</p>

As you can see above, the matrix $A$ rotates the function $f(x)$ 90° anticlockwise.

**Note:** `curvipy.TransformedCurve`
matrix parameter has the same format as numpy arrays. In fact, you can directly use a numpy array.

### Matrix multiplication commutative property

For matrix multiplication, the commutative property of multiplication does not hold. This means that, given two matrices $A$ and $B$, generally $AB {\neq} BA$.

To prove this, let's define the matrices

$$
A =
\begin{bmatrix}
0 & -1\\
1 & 0
\end{bmatrix}
$$

$$
B =
\begin{bmatrix}
1 & 1\\
0 & 1
\end{bmatrix}
$$


and see how they transform the curve $f(x) = x^{3}$.

```python
import curvipy
import turtle


def f(x):
return x**3


curve = curvipy.Function(f)
interval = curvipy.Interval(-10, 10, 70)
plotter = curvipy.Plotter(x_axis_scale=25, y_axis_scale=25, curve_width=6)

A = ((0, -1), (1, 0))
B = ((1, 1), (0, 1))

AB_transformed_curve = curvipy.TransformedCurve(A, curvipy.TransformedCurve(B, curve))
BA_transformed_curve = curvipy.TransformedCurve(B, curvipy.TransformedCurve(A, curve))

# Plot f(x) = x^3 in Orange:
plotter.curve_color = "#FFC947" # Yellow
plotter.plot_curve(curve, interval)

# Plot AB transformed curve in Red:
plotter.curve_color = "#FF7B61" # Red
plotter.plot_curve(AB_transformed_curve, interval)

# Plot BA transformed curve in Blue:
plotter.curve_color = "#457B9D" # Blue
plotter.plot_curve(BA_transformed_curve, interval)

turtle.exitonclick() # Exits plotter on click
```

## :pencil2: Usage
<p align="center">
<img width="500" height="500" src="docs/source/img/mat_multiplication_commutative_property.png">
</p>

As you can see above, transforming $f(x)$ with the matrix $AB$ gives a different result as transforming $f(x)$ with the matrix $BA$.

**Tip:** you can also use numpy arrays to define `AB_transformed_curve` and `BA_transformed_curve` curves, as shown below.

```python
import numpy as np
import curvipy


A = np.array(((0, -1), (1, 0)))
B = np.array(((1, 1), (0, 1)))
AB = np.matmul(A, B)
BA = np.matmul(B, A)


AB_transformed_curve = curvipy.TransformedCurve(AB, curve)
BA_transformed_curve = curvipy.TransformedCurve(BA, curve)
```

One of the main goals of curvpy is to be simple to use. You can check out the curvipy use guide [HERE](/docs/introduction.md).
You can learn more about Curvipy by visiting the Documentation Page.
6 changes: 4 additions & 2 deletions curvipy/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,4 @@
from curvipy.graphing_calculator import GraphingCalculator
from curvipy import lintrans
from .plotter import *
from .curve import *
from .interval import *
from .vector import *
Loading

0 comments on commit 8c7c3dc

Please sign in to comment.