Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

hamming: Split into introduction and instructions #2503

Merged
merged 1 commit into from
Nov 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 0 additions & 27 deletions exercises/hamming/description.md

This file was deleted.

16 changes: 16 additions & 0 deletions exercises/hamming/instructions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# Instructions

Calculate the Hamming distance between two DNA strands.

We read DNA using the letters C, A, G and T.
Two strands might look like this:

GAGCCTACTAACGGGAT
CATCGTAATGACGGCCT
^ ^ ^ ^ ^ ^^

They have 7 differences, and therefore the Hamming distance is 7.

## Implementation notes

The Hamming distance is only defined for sequences of equal length, so an attempt to calculate it between sequences of different lengths should not work.
12 changes: 12 additions & 0 deletions exercises/hamming/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Introduction

Your body is made up of cells that contain DNA.
Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells.
In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime!

When cells divide, their DNA replicates too.
Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information.
If we compare two strands of DNA and count the differences between them, we can see how many mistakes occurred.
This is known as the "Hamming distance".

The Hamming distance is useful in many areas of science, not just biology, so it's a nice phrase to be familiar with :)