>>> By Deecamp Focus-Det Group <<<
pip install -r requirements
- usage
python visualization_with_tracking.py -dets_dir your_dets_dir -lidar_dir your_lidar_dir -eval_dir your_eval_dir
or simple
python visualization_with_tracking.py -d your_dets_dir -l your_lidar_dir -e your_eval_dir
- description
After obtaining 3-d object detection result based on point cloud, we track the objects by AB3DMOT model frame by frame. To visualize the result, you need to feed the detections directory (dets_dir) which includes some text files (.txt), LiDAR directory (lidar_dir) which includes some point cloud data files (.bin), and tracking result directory (eval_dir) .
- usage
python visualization_with_tracking.py -dets_dir your_dets_dir -lidar_dir your_lidar_dir
or simple
python visualization_with_tracking.py -d your_dets_dir -l your_lidar_dir
- description
We track the objects by AB3DMOT model frame by frame after obtaining 3-d object detection result. Then tracking result will be obtained. To visualize the result, you need to feed the detections directory (dets_dir) which includes some text files (.txt), and LiDAR directory (lidar_dir) which includes some point cloud data files (.bin).
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
type | - | - | - | - | - | - | - | w | l | h | x | y | z | r_y | conf |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
frame | id | type | truncated | occluded | alpha | 2d | 2d | 2d | 2d | h | w | l | x | y | z | r_y | conf |
- shortcut
- shortcut-focus