Skip to content

fisheggg/SFXlearner

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

74 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SFXlearner

DOI Open In Colab

This is the codebase for paper "Automatic Recognition of Cascaded Guitar Effects" at DAFX23.

A bunch of rendered examples can be found here.

Please refer to the colab notebook for a run through of the workflow.

Effects list

Number Effect name pySoX Function name parameters
1 overdrive overdrive() {'gain_db': 5}
2 distortion overdrive() {'gain_db': 15}
3 chorus chorus() {'n_voices': 5}
4 flanger flanger() {'depth': 5, 'phase': 50}
5 phaser phaser() {}
6 tremolo tremolo() {}
7 reverb reverb() {'reverberance': 80}
8 feedback_delay echos() {'n_echos': 3, 'delays': [200,400,600], 'decays':[0.4,0.2,0.1], 'gain_out':0.5}
9 slapback_delay echo() {'n_echos': 3, 'delays': [200,400,600], 'decays':[0.4,0.2,0.1], 'gain_out':0.5}
10 low_boost bass() {'frequency': 200, 'gain_db': 10}
11 low_reduct bass() {'frequency': 200, 'gain_db': -10}
12 hi_boost' treble() {'frequency': 8000, 'gain_db': 20}
13 hi_reduct' treble() {'frequency': 8000, 'gain_db': -20}

SingleFX results

Dataset type n_classes Feature Type Using Clean Epochs Validation Accuracy (Highest) Notes
1on1 13 MFCC mean No 100 0.41
1on1 13 MFCC mean Yes 100 0.85
1onN 13 MFCC mean No 100 0.55 converge fast
1onN 13 MFCC mean Yes 100 0.96 converge fast

MultiFX results

Model type Test set With clean effect method n_classes Feature Type micro F1 macro F1 Notes
CRNN guitarset test split Yes [1,5] 13 Mel Spectrogram 0.999 0.999 converge slow
resnet18 guitarset test split Yes [1,5] 13 Mel Spectrogram 0.999 0.999
baseline guitarset test split Yes [1,5] 13 MFCC 0.951 0.952 MFCC+MLP
sampleCNN guitarset test split Yes [1,5] 13 Raw audio 0.864 0.684
CRNN IDMT-SMT-GUITAR Yes [1,5] 13 Mel Spectrogram 0.963 0.961 converge slow
resnet18 IDMT-SMT-GUITAR Yes [1,5] 13 Mel Spectrogram 0.968 0.970
resnet14 IDMT-SMT-GUITAR Yes [1,5] 13 Mel Spectrogram 0.963 0.955
resnet10 IDMT-SMT-GUITAR Yes [1,5] 13 Mel Spectrogram 0.958 0.950
resnet6 IDMT-SMT-GUITAR Yes [1,5] 13 Mel Spectrogram 0.926 0.917
baseline IDMT-SMT-GUITAR Yes [1,5] 13 MFCC 0.779 0.772 MFCC+MLP
sampleCNN IDMT-SMT-GUITAR Yes [1,5] 13 Raw audio 0.804 0.640
CRNN guitarset test split No [1,5] 13 Mel Spectrogram 0.967 0.968 converge slow
resnet18 guitarset test split No [1,5] 13 Mel Spectrogram 0.958 0.965
baseline guitarset test split No 1,5] 13 MFCC 0.892 0.897 MFCC+MLP
sampleCNN guitarset test split No [1,5] 13 Raw audio 0.877 0.778
CRNN IDMT-SMT-GUITAR No [1,5] 13 Mel Spectrogram 0.856 0.851 converge slow
resnet18 IDMT-SMT-GUITAR No [1,5] 13 Mel Spectrogram 0.876 0.906
resnet14 IDMT-SMT-GUITAR No [1,5] 13 Mel Spectrogram 0.848 0.832
resnet10 IDMT-SMT-GUITAR No [1,5] 13 Mel Spectrogram 0.860 0.844
resnet6 IDMT-SMT-GUITAR No [1,5] 13 Mel Spectrogram 0.830 0.811
baseline IDMT-SMT-GUITAR No [1,5] 13 MFCC 0.704 0.696 MFCC+MLP
sampleCNN IDMT-SMT-GUITAR No [1,5] 13 Raw audio 0.697 0.623

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published