-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: time series transformer, automated iterative parameter tuning
- Loading branch information
1 parent
81a5f62
commit e3b9871
Showing
16 changed files
with
1,291 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
2024-11-19 16:24:23,579 - INFO - Starting LSTM model script | ||
2024-11-19 16:24:23,579 - INFO - Loading and preparing data | ||
2024-11-19 16:24:30,816 - INFO - Data overview: count 181.000000 | ||
mean 1184.917127 | ||
std 358.869597 | ||
min 645.000000 | ||
25% 878.000000 | ||
50% 1099.000000 | ||
75% 1512.000000 | ||
max 1962.000000 | ||
Name: transaction_qty, dtype: float64 | ||
2024-11-19 16:24:30,817 - INFO - Sequence length set to: 10 | ||
2024-11-19 16:24:30,817 - INFO - Training data size: 136, Testing data size: 35 | ||
2024-11-19 16:24:30,896 - INFO - Model configuration: | ||
2024-11-19 16:24:30,898 - INFO - Model: "sequential" | ||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ | ||
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ | ||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ | ||
│ lstm (LSTM) │ (None, 50) │ 10,400 │ | ||
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ | ||
│ dense (Dense) │ (None, 1) │ 51 │ | ||
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ | ||
Total params: 10,451 (40.82 KB) | ||
Trainable params: 10,451 (40.82 KB) | ||
Non-trainable params: 0 (0.00 B) | ||
|
||
2024-11-19 16:24:30,898 - INFO - Starting model training | ||
2024-11-19 16:24:33,106 - INFO - Training completed. Logging training history: | ||
2024-11-19 16:24:33,106 - INFO - Epoch 1: loss = 0.0911, val_loss = 0.3790 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 2: loss = 0.0735, val_loss = 0.3120 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 3: loss = 0.0580, val_loss = 0.2450 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 4: loss = 0.0425, val_loss = 0.1761 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 5: loss = 0.0288, val_loss = 0.1090 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 6: loss = 0.0173, val_loss = 0.0476 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 7: loss = 0.0125, val_loss = 0.0114 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 8: loss = 0.0139, val_loss = 0.0053 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 9: loss = 0.0136, val_loss = 0.0075 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 10: loss = 0.0107, val_loss = 0.0144 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 11: loss = 0.0100, val_loss = 0.0227 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 12: loss = 0.0099, val_loss = 0.0205 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 13: loss = 0.0094, val_loss = 0.0119 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 14: loss = 0.0085, val_loss = 0.0058 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 15: loss = 0.0078, val_loss = 0.0050 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 16: loss = 0.0075, val_loss = 0.0053 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 17: loss = 0.0070, val_loss = 0.0060 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 18: loss = 0.0067, val_loss = 0.0066 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 19: loss = 0.0065, val_loss = 0.0086 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 20: loss = 0.0064, val_loss = 0.0139 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 21: loss = 0.0064, val_loss = 0.0191 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 22: loss = 0.0064, val_loss = 0.0166 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 23: loss = 0.0063, val_loss = 0.0156 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 24: loss = 0.0063, val_loss = 0.0186 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 25: loss = 0.0063, val_loss = 0.0178 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 26: loss = 0.0063, val_loss = 0.0163 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 27: loss = 0.0063, val_loss = 0.0145 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 28: loss = 0.0063, val_loss = 0.0160 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 29: loss = 0.0063, val_loss = 0.0165 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 30: loss = 0.0065, val_loss = 0.0105 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 31: loss = 0.0063, val_loss = 0.0124 | ||
2024-11-19 16:24:33,106 - INFO - Epoch 32: loss = 0.0064, val_loss = 0.0175 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 33: loss = 0.0063, val_loss = 0.0130 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 34: loss = 0.0063, val_loss = 0.0093 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 35: loss = 0.0063, val_loss = 0.0117 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 36: loss = 0.0062, val_loss = 0.0151 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 37: loss = 0.0063, val_loss = 0.0137 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 38: loss = 0.0062, val_loss = 0.0123 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 39: loss = 0.0064, val_loss = 0.0105 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 40: loss = 0.0063, val_loss = 0.0143 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 41: loss = 0.0063, val_loss = 0.0123 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 42: loss = 0.0063, val_loss = 0.0111 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 43: loss = 0.0062, val_loss = 0.0133 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 44: loss = 0.0062, val_loss = 0.0131 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 45: loss = 0.0062, val_loss = 0.0113 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 46: loss = 0.0062, val_loss = 0.0130 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 47: loss = 0.0062, val_loss = 0.0121 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 48: loss = 0.0062, val_loss = 0.0104 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 49: loss = 0.0062, val_loss = 0.0120 | ||
2024-11-19 16:24:33,107 - INFO - Epoch 50: loss = 0.0062, val_loss = 0.0125 | ||
2024-11-19 16:24:33,107 - INFO - Making predictions | ||
2024-11-19 16:24:34,662 - INFO - Model evaluation - MAE: 210.14, RMSE: 263.01 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
2024-11-19 16:24:42,758 - INFO - Starting LSTM model script | ||
2024-11-19 16:24:42,758 - INFO - Loading and preparing data | ||
2024-11-19 16:24:50,050 - INFO - Data overview: count 181.000000 | ||
mean 1184.917127 | ||
std 358.869597 | ||
min 645.000000 | ||
25% 878.000000 | ||
50% 1099.000000 | ||
75% 1512.000000 | ||
max 1962.000000 | ||
Name: transaction_qty, dtype: float64 | ||
2024-11-19 16:24:50,051 - INFO - Sequence length set to: 10 | ||
2024-11-19 16:24:50,052 - INFO - Training data size: 136, Testing data size: 35 | ||
2024-11-19 16:24:50,110 - INFO - Model configuration: | ||
2024-11-19 16:24:50,112 - INFO - Model: "sequential" | ||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ | ||
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ | ||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ | ||
│ lstm (LSTM) │ (None, 50) │ 10,400 │ | ||
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ | ||
│ dense (Dense) │ (None, 1) │ 51 │ | ||
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ | ||
Total params: 10,451 (40.82 KB) | ||
Trainable params: 10,451 (40.82 KB) | ||
Non-trainable params: 0 (0.00 B) | ||
|
||
2024-11-19 16:24:50,112 - INFO - Starting model training | ||
2024-11-19 16:24:52,302 - INFO - Training completed. Logging training history: | ||
2024-11-19 16:24:52,303 - INFO - Epoch 1: loss = 0.1014, val_loss = 0.4227 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 2: loss = 0.0818, val_loss = 0.3487 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 3: loss = 0.0645, val_loss = 0.2825 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 4: loss = 0.0485, val_loss = 0.2136 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 5: loss = 0.0339, val_loss = 0.1409 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 6: loss = 0.0211, val_loss = 0.0697 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 7: loss = 0.0149, val_loss = 0.0220 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 8: loss = 0.0149, val_loss = 0.0092 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 9: loss = 0.0155, val_loss = 0.0087 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 10: loss = 0.0131, val_loss = 0.0157 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 11: loss = 0.0111, val_loss = 0.0227 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 12: loss = 0.0105, val_loss = 0.0219 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 13: loss = 0.0100, val_loss = 0.0144 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 14: loss = 0.0089, val_loss = 0.0081 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 15: loss = 0.0083, val_loss = 0.0048 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 16: loss = 0.0077, val_loss = 0.0051 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 17: loss = 0.0073, val_loss = 0.0055 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 18: loss = 0.0069, val_loss = 0.0069 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 19: loss = 0.0066, val_loss = 0.0087 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 20: loss = 0.0065, val_loss = 0.0113 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 21: loss = 0.0065, val_loss = 0.0142 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 22: loss = 0.0064, val_loss = 0.0172 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 23: loss = 0.0065, val_loss = 0.0213 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 24: loss = 0.0064, val_loss = 0.0185 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 25: loss = 0.0065, val_loss = 0.0148 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 26: loss = 0.0064, val_loss = 0.0164 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 27: loss = 0.0064, val_loss = 0.0187 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 28: loss = 0.0065, val_loss = 0.0186 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 29: loss = 0.0064, val_loss = 0.0125 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 30: loss = 0.0064, val_loss = 0.0115 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 31: loss = 0.0064, val_loss = 0.0131 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 32: loss = 0.0064, val_loss = 0.0131 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 33: loss = 0.0065, val_loss = 0.0174 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 34: loss = 0.0064, val_loss = 0.0128 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 35: loss = 0.0066, val_loss = 0.0092 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 36: loss = 0.0064, val_loss = 0.0127 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 37: loss = 0.0064, val_loss = 0.0165 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 38: loss = 0.0064, val_loss = 0.0131 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 39: loss = 0.0063, val_loss = 0.0117 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 40: loss = 0.0063, val_loss = 0.0117 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 41: loss = 0.0064, val_loss = 0.0114 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 42: loss = 0.0063, val_loss = 0.0129 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 43: loss = 0.0064, val_loss = 0.0139 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 44: loss = 0.0063, val_loss = 0.0112 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 45: loss = 0.0064, val_loss = 0.0102 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 46: loss = 0.0063, val_loss = 0.0139 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 47: loss = 0.0063, val_loss = 0.0131 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 48: loss = 0.0063, val_loss = 0.0123 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 49: loss = 0.0063, val_loss = 0.0115 | ||
2024-11-19 16:24:52,303 - INFO - Epoch 50: loss = 0.0063, val_loss = 0.0127 | ||
2024-11-19 16:24:52,303 - INFO - Making predictions | ||
2024-11-19 16:24:55,205 - INFO - Model evaluation - MAE: 211.56, RMSE: 263.88 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
2024-11-19 16:25:00,434 - INFO - Starting LSTM model script | ||
2024-11-19 16:25:00,434 - INFO - Loading and preparing data | ||
2024-11-19 16:25:07,438 - INFO - Data overview: count 181.000000 | ||
mean 1184.917127 | ||
std 358.869597 | ||
min 645.000000 | ||
25% 878.000000 | ||
50% 1099.000000 | ||
75% 1512.000000 | ||
max 1962.000000 | ||
Name: transaction_qty, dtype: float64 | ||
2024-11-19 16:25:07,439 - INFO - Sequence length set to: 10 | ||
2024-11-19 16:25:07,439 - INFO - Training data size: 136, Testing data size: 35 | ||
2024-11-19 16:25:07,477 - INFO - Model configuration: | ||
2024-11-19 16:25:07,478 - INFO - Model: "sequential" | ||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ | ||
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ | ||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ | ||
│ lstm (LSTM) │ (None, 50) │ 10,400 │ | ||
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ | ||
│ dense (Dense) │ (None, 1) │ 51 │ | ||
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ | ||
Total params: 10,451 (40.82 KB) | ||
Trainable params: 10,451 (40.82 KB) | ||
Non-trainable params: 0 (0.00 B) | ||
|
||
2024-11-19 16:25:07,478 - INFO - Starting model training | ||
2024-11-19 16:25:09,639 - INFO - Training completed. Logging training history: | ||
2024-11-19 16:25:09,639 - INFO - Epoch 1: loss = 0.1416, val_loss = 0.6295 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 2: loss = 0.1225, val_loss = 0.5560 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 3: loss = 0.1041, val_loss = 0.4865 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 4: loss = 0.0874, val_loss = 0.4173 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 5: loss = 0.0712, val_loss = 0.3453 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 6: loss = 0.0545, val_loss = 0.2652 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 7: loss = 0.0378, val_loss = 0.1759 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 8: loss = 0.0247, val_loss = 0.0873 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 9: loss = 0.0184, val_loss = 0.0324 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 10: loss = 0.0192, val_loss = 0.0169 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 11: loss = 0.0170, val_loss = 0.0207 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 12: loss = 0.0133, val_loss = 0.0295 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 13: loss = 0.0120, val_loss = 0.0305 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 14: loss = 0.0113, val_loss = 0.0213 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 15: loss = 0.0100, val_loss = 0.0075 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 16: loss = 0.0087, val_loss = 0.0048 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 17: loss = 0.0081, val_loss = 0.0069 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 18: loss = 0.0074, val_loss = 0.0064 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 19: loss = 0.0069, val_loss = 0.0082 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 20: loss = 0.0067, val_loss = 0.0148 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 21: loss = 0.0065, val_loss = 0.0245 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 22: loss = 0.0065, val_loss = 0.0276 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 23: loss = 0.0067, val_loss = 0.0297 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 24: loss = 0.0066, val_loss = 0.0179 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 25: loss = 0.0067, val_loss = 0.0185 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 26: loss = 0.0065, val_loss = 0.0221 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 27: loss = 0.0065, val_loss = 0.0264 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 28: loss = 0.0067, val_loss = 0.0220 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 29: loss = 0.0065, val_loss = 0.0129 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 30: loss = 0.0066, val_loss = 0.0127 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 31: loss = 0.0065, val_loss = 0.0193 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 32: loss = 0.0065, val_loss = 0.0164 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 33: loss = 0.0065, val_loss = 0.0144 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 34: loss = 0.0065, val_loss = 0.0148 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 35: loss = 0.0064, val_loss = 0.0149 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 36: loss = 0.0064, val_loss = 0.0149 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 37: loss = 0.0065, val_loss = 0.0160 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 38: loss = 0.0066, val_loss = 0.0117 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 39: loss = 0.0065, val_loss = 0.0147 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 40: loss = 0.0064, val_loss = 0.0171 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 41: loss = 0.0064, val_loss = 0.0127 | ||
2024-11-19 16:25:09,639 - INFO - Epoch 42: loss = 0.0064, val_loss = 0.0119 | ||
2024-11-19 16:25:09,640 - INFO - Epoch 43: loss = 0.0067, val_loss = 0.0178 | ||
2024-11-19 16:25:09,640 - INFO - Epoch 44: loss = 0.0064, val_loss = 0.0125 | ||
2024-11-19 16:25:09,640 - INFO - Epoch 45: loss = 0.0064, val_loss = 0.0112 | ||
2024-11-19 16:25:09,640 - INFO - Epoch 46: loss = 0.0065, val_loss = 0.0147 | ||
2024-11-19 16:25:09,640 - INFO - Epoch 47: loss = 0.0064, val_loss = 0.0118 | ||
2024-11-19 16:25:09,640 - INFO - Epoch 48: loss = 0.0064, val_loss = 0.0130 | ||
2024-11-19 16:25:09,640 - INFO - Epoch 49: loss = 0.0064, val_loss = 0.0159 | ||
2024-11-19 16:25:09,640 - INFO - Epoch 50: loss = 0.0066, val_loss = 0.0106 | ||
2024-11-19 16:25:09,640 - INFO - Making predictions | ||
2024-11-19 16:25:17,363 - INFO - Model evaluation - MAE: 202.08, RMSE: 258.52 |
Oops, something went wrong.