Skip to content

Commit

Permalink
build(deps-dev): bump ruff from 0.1.14 to 0.4.10 (#357)
Browse files Browse the repository at this point in the history
* build(deps): bump ruff from 0.1.14 to 0.4.10

Bumps [ruff](https://github.com/astral-sh/ruff) from 0.1.14 to 0.4.10.
- [Release notes](https://github.com/astral-sh/ruff/releases)
- [Changelog](https://github.com/astral-sh/ruff/blob/main/CHANGELOG.md)
- [Commits](astral-sh/ruff@v0.1.14...v0.4.10)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <[email protected]>

* style(pre-commit): bump ruff to 0.4.10

* style(pyproject): update ruff config

* style(ruff): fix lint

* docs(makefile): update ruff command

* ci(style): switched to uv installer

* ci(labeler): update label rules

* style(ruff): fix lint

* style(api): fix async

---------

Signed-off-by: dependabot[bot] <[email protected]>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: F-G Fernandez <[email protected]>
  • Loading branch information
dependabot[bot] and frgfm authored Jun 23, 2024
1 parent 40f8735 commit eb184df
Show file tree
Hide file tree
Showing 25 changed files with 89 additions and 109 deletions.
9 changes: 4 additions & 5 deletions .github/collect_env.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,14 +168,13 @@ def get_nvidia_smi():
def get_platform():
if sys.platform.startswith("linux"):
return "linux"
elif sys.platform.startswith("win32"):
if sys.platform.startswith("win32"):
return "win32"
elif sys.platform.startswith("cygwin"):
if sys.platform.startswith("cygwin"):
return "cygwin"
elif sys.platform.startswith("darwin"):
if sys.platform.startswith("darwin"):
return "darwin"
else:
return sys.platform
return sys.platform


def get_mac_version(run_lambda):
Expand Down
8 changes: 7 additions & 1 deletion .github/labeler.yml
Original file line number Diff line number Diff line change
Expand Up @@ -60,4 +60,10 @@

'topic: build':
- changed-files:
- any-glob-to-any-file: setup.py
- any-glob-to-any-file:
- setup.py
- pyproject.toml

'topic: style':
- changed-files:
- any-glob-to-any-file: .pre-commit-config.yaml
4 changes: 1 addition & 3 deletions .github/verify_labels.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,9 +82,7 @@ def parse_args():
)

parser.add_argument("pr", type=int, help="PR number")
args = parser.parse_args()

return args
return parser.parse_args()


if __name__ == "__main__":
Expand Down
15 changes: 8 additions & 7 deletions .github/workflows/style.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,8 @@ jobs:
architecture: x64
- name: Run ruff
run: |
pip install ruff==0.1.14
python -m pip install --upgrade uv
uv pip install --system -e '.[quality]'
ruff --version
ruff check --diff .
Expand All @@ -44,10 +45,8 @@ jobs:
key: ${{ runner.os }}-python-${{ matrix.python }}-${{ hashFiles('pyproject.toml') }}-quality
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e '.[quality]'
- name: Run mypy
run: |
python -m pip install --upgrade uv
uv pip install --system -e '.[quality]'
mypy --version
mypy
Expand All @@ -65,7 +64,8 @@ jobs:
architecture: x64
- name: Run ruff
run: |
pip install ruff==0.1.14
python -m pip install --upgrade uv
uv pip install --system -e '.[quality]'
ruff --version
ruff format --check --diff .
Expand All @@ -83,7 +83,8 @@ jobs:
architecture: x64
- name: Run ruff
run: |
pip install pre-commit
python -m pip install --upgrade uv
uv pip install --system -e '.[quality]'
git checkout -b temp
pre-commit install
pre-commit --version
Expand Down
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ repos:
args: ['--branch', 'main']
- id: trailing-whitespace
- repo: https://github.com/charliermarsh/ruff-pre-commit
rev: 'v0.1.14'
rev: 'v0.4.10'
hooks:
- id: ruff
args:
Expand Down
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ quality:
# this target runs checks on all files and potentially modifies some of them
style:
ruff format .
ruff --fix .
ruff check --fix .

# Run tests for the library
test:
Expand Down
2 changes: 1 addition & 1 deletion api/app/routes/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@


@router.post("/", status_code=status.HTTP_200_OK, summary="Perform image classification")
async def classify(file: UploadFile = File(...)) -> ClsCandidate:
def classify(file: UploadFile = File(...)) -> ClsCandidate:
"""Runs holocron vision model to analyze the input image"""
probs = classify_image(decode_image(file.file.read()))

Expand Down
2 changes: 1 addition & 1 deletion docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ def inject_checkpoint_metadata(app, what, name, obj, options, lines):
table.extend((
("url", f"`link <{meta.url}>`__"),
("sha256", meta.sha256[:16]),
("size", f"{meta.size / 1024 ** 2:.1f}MB"),
("size", f"{meta.size / 1024**2:.1f}MB"),
("num_params", f"{meta.num_params / 1000000.0:.1f}M"),
))
# Wrap the text
Expand Down
4 changes: 1 addition & 3 deletions holocron/models/classification/sknet.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,9 +110,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
b, m, c = paths.shape[:3]
z = self.sa(paths.sum(dim=1)).view(b, m, c, 1, 1)
attention_factors = torch.softmax(z, dim=1)
out = (attention_factors * paths).sum(dim=1)

return out
return (attention_factors * paths).sum(dim=1)


class SKBottleneck(_ResBlock):
Expand Down
4 changes: 1 addition & 3 deletions holocron/models/classification/tridentnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
dilations = [1] * self.num_branches if self.dilation[0] == 1 else [1 + idx for idx in range(self.num_branches)]

# Use shared weight to apply the convolution
out = torch.cat(
return torch.cat(
[
F.conv2d(
_x,
Expand All @@ -57,8 +57,6 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
1,
)

return out


class Tridentneck(_ResBlock):
expansion: int = 4
Expand Down
4 changes: 1 addition & 3 deletions holocron/models/detection/yolo.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,9 +339,7 @@ def _format_outputs(self, x: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
def _forward(self, x: Tensor) -> Tensor:
out = self.backbone(x)
out = self.block4(out)
out = self.classifier(out)

return out
return self.classifier(out)

def forward(
self, x: Tensor, target: Optional[List[Dict[str, Tensor]]] = None
Expand Down
4 changes: 1 addition & 3 deletions holocron/models/detection/yolov2.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,9 +208,7 @@ def _forward(self, x: Tensor) -> Tensor:
out = torch.cat((passthrough, out), 1)
out = self.block6(out)

out = self.head(out)

return out
return self.head(out)

def forward(
self, x: Union[Tensor, List[Tensor], Tuple[Tensor, ...]], target: Optional[List[Dict[str, Tensor]]] = None
Expand Down
3 changes: 1 addition & 2 deletions holocron/models/detection/yolov4.py
Original file line number Diff line number Diff line change
Expand Up @@ -628,15 +628,14 @@ def forward(
y3 = self.yolo3(o3, target)

if not self.training:
detections = [
return [
{
"boxes": torch.cat((det1["boxes"], det2["boxes"], det3["boxes"]), dim=0),
"scores": torch.cat((det1["scores"], det2["scores"], det3["scores"]), dim=0),
"labels": torch.cat((det1["labels"], det2["labels"], det3["labels"]), dim=0),
}
for det1, det2, det3 in zip(y1, y2, y3)
]
return detections

return {k: y1[k] + y2[k] + y3[k] for k in y1}

Expand Down
6 changes: 2 additions & 4 deletions holocron/models/segmentation/unet.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,8 +223,7 @@ def forward(self, x: Tensor) -> Tensor:
x = decoder(xs.pop(), x)

# Classifier
x = self.classifier(x)
return x
return self.classifier(x)


class UBlock(nn.Module):
Expand Down Expand Up @@ -368,8 +367,7 @@ def forward(self, x: Tensor) -> Tensor:
x = self.upsample(x)

# Classifier
x = self.classifier(x)
return x
return self.classifier(x)


def _unet(arch: str, pretrained: bool, progress: bool, **kwargs: Any) -> UNet:
Expand Down
3 changes: 1 addition & 2 deletions holocron/models/segmentation/unet3p.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,8 +155,7 @@ def forward(self, x: Tensor) -> Tensor:
xs[idx] = self.decoder[idx](xs[:idx], xs[idx], xs[idx + 1 :])

# Classifier
x = self.classifier(xs[0])
return x
return self.classifier(xs[0])


def _unet(arch: str, pretrained: bool, progress: bool, **kwargs: Any) -> nn.Module:
Expand Down
8 changes: 2 additions & 6 deletions holocron/nn/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,9 +133,7 @@ def concat_downsample2d(x: Tensor, scale_factor: int) -> Tensor:
# N * C * H * W --> N * C * (H/scale_factor) * scale_factor * (W/scale_factor) * scale_factor
x = x.view(b, c, h // scale_factor, scale_factor, w // scale_factor, scale_factor)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous()
x = x.view(b, int(c * scale_factor**2), h // scale_factor, w // scale_factor)

return x
return x.view(b, int(c * scale_factor**2), h // scale_factor, w // scale_factor)


def z_pool(x: Tensor, dim: int) -> Tensor:
Expand Down Expand Up @@ -364,9 +362,7 @@ def _xcorr2d(
h = floor((h + (2 * padding[0]) - (dilation[0] * (weight.shape[-2] - 1)) - 1) / stride[0] + 1)
w = floor((w + (2 * padding[1]) - (dilation[1] * (weight.shape[-1] - 1)) - 1) / stride[1] + 1)

x = x.view(-1, weight.shape[0], h, w)

return x
return x.view(-1, weight.shape[0], h, w)


def _convNd(x: Tensor, weight: Tensor) -> Tensor:
Expand Down
6 changes: 2 additions & 4 deletions holocron/nn/modules/activation.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,7 @@ def __init__(self, inplace: bool = False) -> None:
self.inplace = inplace

def extra_repr(self) -> str:
inplace_str = "inplace=True" if self.inplace else ""
return inplace_str
return "inplace=True" if self.inplace else ""


class HardMish(_Activation):
Expand Down Expand Up @@ -80,5 +79,4 @@ def __init__(self, in_channels: int, kernel_size: int = 3) -> None:
def forward(self, x: Tensor) -> Tensor:
out = self.conv(x)
out = self.bn(out)
x = torch.max(x, out)
return x
return torch.max(x, out)
3 changes: 1 addition & 2 deletions holocron/nn/modules/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,5 +74,4 @@ def forward(self, x: Tensor) -> Tensor:
x_h = cast(Tensor, self.h_branch(x))
x_w = cast(Tensor, self.w_branch(x))

out = (x_c + x_h + x_w) / 3
return out
return (x_c + x_h + x_w) / 3
4 changes: 1 addition & 3 deletions holocron/nn/modules/conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -496,6 +496,4 @@ def forward(self, x: Tensor) -> Tensor:

# Multiply-Add operation
# --> (N, C, H // s, W // s)
out = (kernel * x_unfolded).sum(dim=3).view(*x.shape[:2], *kernel.shape[-2:])

return out
return (kernel * x_unfolded).sum(dim=3).view(*x.shape[:2], *kernel.shape[-2:])
9 changes: 3 additions & 6 deletions holocron/nn/modules/downsample.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,8 +74,7 @@ def forward(self, x: Tensor) -> Tensor:
return x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1)

def extra_repr(self) -> str:
inplace_str = "flatten=True" if self.flatten else ""
return inplace_str
return "flatten=True" if self.flatten else ""


class GlobalMaxPool2d(nn.Module):
Expand All @@ -97,13 +96,11 @@ def forward(self, x: Tensor) -> Tensor:
return x.view(x.size(0), x.size(1), -1).max(-1).values.view(x.size(0), x.size(1), 1, 1)

def extra_repr(self) -> str:
inplace_str = "flatten=True" if self.flatten else ""
return inplace_str
return "flatten=True" if self.flatten else ""


def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1) -> int:
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding
return ((stride - 1) + dilation * (kernel_size - 1)) // 2


class BlurPool2d(nn.Module):
Expand Down
3 changes: 1 addition & 2 deletions holocron/nn/modules/lambda_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,5 +105,4 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:

Y = Yc + Yp
# B x (H * W) x num_heads x dim_v -> B x (num_heads * dim_v) x H x W
out = Y.permute(0, 2, 3, 1).reshape(b, self.num_heads * v.shape[2], h, w)
return out
return Y.permute(0, 2, 3, 1).reshape(b, self.num_heads * v.shape[2], h, w)
3 changes: 1 addition & 2 deletions holocron/trainer/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -362,8 +362,7 @@ def find_lr(
if torch.isnan(batch_loss) or torch.isinf(batch_loss):
if batch_idx == 0:
raise ValueError("loss value is NaN or inf.")
else:
break
break
self.loss_recorder.append(batch_loss.item())
# Stop after the number of iterations
if batch_idx + 1 == num_it:
Expand Down
15 changes: 7 additions & 8 deletions holocron/transforms/interpolation.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,14 +87,13 @@ def get_params(self, image: Union[Image.Image, torch.Tensor]) -> Tuple[int, int]
def forward(self, image: Union[Image.Image, torch.Tensor]) -> Union[Image.Image, torch.Tensor]:
if self.mode == ResizeMethod.SQUISH:
return super().forward(image)
else:
h, w = self.get_params(image)
img = resize(image, (h, w), self.interpolation)
# get the padding
h_pad, w_pad = self.size[0] - h, self.size[1] - w
_padding = w_pad // 2, h_pad // 2, w_pad - w_pad // 2, h_pad - h_pad // 2
# Fill the rest up to target_size
return pad(img, _padding, padding_mode=self.pad_mode)
h, w = self.get_params(image)
img = resize(image, (h, w), self.interpolation)
# get the padding
h_pad, w_pad = self.size[0] - h, self.size[1] - w
_padding = w_pad // 2, h_pad // 2, w_pad - w_pad // 2, h_pad - h_pad // 2
# Fill the rest up to target_size
return pad(img, _padding, padding_mode=self.pad_mode)


class RandomZoomOut(nn.Module):
Expand Down
Loading

0 comments on commit eb184df

Please sign in to comment.