Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Improves latency script by adding ONNX #288

Merged
merged 3 commits into from
Jan 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/scripts.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ jobs:
run: |
python -m pip install --upgrade pip
pip install -e . --upgrade
pip install onnx onnxruntime
- name: Run analysis script
run: python scripts/eval_latency.py rexnet1_0x
90 changes: 69 additions & 21 deletions scripts/eval_latency.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,47 +11,94 @@
import time

import numpy as np
import onnxruntime
import torch

from holocron import models


@torch.inference_mode()
def main(args):
if args.device is None:
args.device = "cuda:0" if torch.cuda.is_available() else "cpu"

device = torch.device(args.device)
def run_evaluation(
model: torch.nn.Module, img_tensor: torch.Tensor, num_it: int = 100, warmup_it: int = 10
) -> np.array:
# Warmup
for _ in range(warmup_it):
_ = model(img_tensor)

# Pretrained imagenet model
model = models.__dict__[args.arch](pretrained=args.pretrained).eval().to(device=device)
timings = []

# RepVGG
if args.arch.startswith("repvgg") or args.arch.startswith("mobileone"):
model.reparametrize()
# Evaluation runs
for _ in range(num_it):
start_ts = time.perf_counter()
_ = model(img_tensor)
timings.append(time.perf_counter() - start_ts)

# Compile (using tensor cores)
torch.set_float32_matmul_precision("high")
model = torch.compile(model)
return np.array(timings)

# Input
img_tensor = torch.rand((1, 3, args.size, args.size)).to(device=device)

def run_onnx_evaluation(
model: onnxruntime.InferenceSession, img_tensor: np.array, num_it: int = 100, warmup_it: int = 10
) -> np.array:
# Set input
ort_input = {model.get_inputs()[0].name: img_tensor}
# Warmup
for _ in range(10):
_ = model(img_tensor)
for _ in range(warmup_it):
_ = model.run(None, ort_input)

timings = []

# Evaluation runs
for _ in range(args.it):
for _ in range(num_it):
start_ts = time.perf_counter()
_ = model(img_tensor)
_ = model.run(None, ort_input)
timings.append(time.perf_counter() - start_ts)

_timings = np.array(timings)
return np.array(timings)


@torch.inference_mode()
def main(args):
# Pretrained imagenet model
model = models.__dict__[args.arch](pretrained=args.pretrained).eval()
# Reparametrizable models
if args.arch.startswith("repvgg") or args.arch.startswith("mobileone"):
model.reparametrize()

# Input
img_tensor = torch.rand((1, 3, args.size, args.size))

_timings = run_evaluation(model, img_tensor, args.it)
cpu_str = f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms"

# ONNX
torch.onnx.export(
model,
img_tensor,
"tmp.onnx",
export_params=True,
opset_version=14,
)
onnx_session = onnxruntime.InferenceSession("tmp.onnx")
npy_tensor = img_tensor.numpy()
_timings = run_onnx_evaluation(onnx_session, npy_tensor, args.it)
onnx_str = f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms"

# GPU
if args.device is None:
args.device = "cuda:0" if torch.cuda.is_available() else "cpu"
if args.device == "cpu":
gpu_str = "N/A"
else:
device = torch.device(args.device)
model = model.to(device=device)

# Input
img_tensor = img_tensor.to(device=device)
_timings = run_evaluation(model, img_tensor, args.it)
gpu_str = f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms"

print(f"{args.arch} ({args.it} runs on ({args.size}, {args.size}) inputs)")
print(f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms")
print(f"CPU - {cpu_str}\nONNX - {onnx_str}\nGPU - {gpu_str}")


if __name__ == "__main__":
Expand All @@ -62,6 +109,7 @@ def main(args):
parser.add_argument("--size", type=int, default=224, help="The image input size")
parser.add_argument("--device", type=str, default=None, help="Default device to perform computation on")
parser.add_argument("--it", type=int, default=100, help="Number of iterations to run")
parser.add_argument("--warmup", type=int, default=10, help="Number of iterations for warmup")
parser.add_argument(
"--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true"
)
Expand Down
Loading